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Agenda

e Review
e HW 2 Written
e HW 2 Coding



Definition

A belief network (BN) are a family of probability distributions described by a
directed acyclic graph (DAG) in which:

1. Nodes represent random variables.

2. Edges represent direct conditional dependencies.

3. Ifrandom variables are discrete, then family of probability distributions
are represented as conditional probability tables (CPTs)

In this class, you can assume all variables will be discrete!

BN = DAG + CPTs
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Suppose you have n binary random variables:

e Thejoint distribution is: P(zy,z, ..., Zn) s e
e The joint distribution space complexity is: O(2")
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Suppose you have n binary random variables:

e The jointdistributionis: P(xy,x,, ..., Z,) oo oo™
e The joint distribution space complexity is: O(2")
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e Where for each variable: p(zi|z1, z2, ..., zi—1) = p(zi|pa(z;))

e The space complexity becomes: O(n2*1)

BN’s exploit conditional independence relations to reduce space

requirements
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Exact Inference in BNs

Given a BN, we are interested in using it to answer useful questions:

P(X)
P(X]Y)
P(Y | X)
P(X=x|E)

We make the following assumptions:

e The graph structure and CPTs are already defined and learned
e Allvariables can be observed



Exact Inference in BNs

Given a BN, we are interested in using it to answer useful questions:

P(X)
P(X]Y)
P(Y | X)
P(X=x|E)

We make the following assumptions:

e The graph structure and CPTs are already defined and learned
e Allvariables can be observed

Goal: Express desired probability expressions in the form of a product of
CPTs



Exact Inference in BNs

Two popular approaches (covered in coming lectures):

e Variable elimination: Splitting inference into factors and eliminating
variables at each factor

e Polytree Inference (Pearl 1986): Start from query node and recursively
pass messages up and down polytree, exploiting DAG structure



d-separation

- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

A path 7 is blocked by a set of nodes £ if there exists a
node Z € « for which one of the three following conditions

hold.

(1) ZeE O . O edges align
O—@—0O

(2) Z€e E O: ‘ =O edges diverge

3) Z¢E O—> edges converge
descendants(Z) N E = ()




2.1 Probabilistic Inference

You are given the following:

P(E=1) = 0.002 P(B=1) = 0.001

P(A=11E=0,B=0) = 0.001
P(A=1\E=0,B=1) = 0.94
P(A=1\E=1,B=0) = 0.29
P(A=1\E=1,B=1) = 0.95

P(E) ro-tu=0 o e
P(B)

P(A|B,E)

PU|A)

P(M|A)



2.1 Probabilistic Inference

You are given the following:

P(E)

P(B)
P(A|B,E)
PU[A)
P(M[A)

P(E=1) = 0.002 P(B=1) = 0.001

P(A=11E=0,B=0) = 0.001
P(A=1\E=0,B=1) = 0.94
P(A=1\E=1,B=0) = 0.29
P(A=1\E=1,B=1) = 0.95

John Calls Mary Calls

Goal: Manipulate unknown probability expressions
into a form containing the given conditional
probability tables (CPTs)

P(J=11A=0) = 0.05
P(J=11A=1) = 0.90

P(M=11A=0) = 0.01
P(M=11A=1) = 0.70



P(E=1) = 0.002

P(A=11E=0,B=0) = 0.001
P(A=11E=0,B=1) = 0.94
P(A=11E=1,B=0) = 0.29

P(A=1E=1,B=1) = 0.95
P(B)

P(A|B,E) Goal: Manipulate unknown probability expressions
P(|A) into a form containing the given conditional

P(M | A) probability tables (CPTs)

2.1 Probabilistic Inference

You are given the following:

P(J=11A=0) = 0.05

Solution: Use basic probability theory + exploiting
the graph structure to get independence relations

P(B=1) = 0.001

P(M=11A=0) = 0.01
P(M=11A=1) = 0.70
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Mary Calls

2.1 Probabilistic Inference

Suppose we want to compute: P(E|))

P(J=11A=0) = 0.05
P(J=11A=1) = 0.90

P(M=11A=0) = 0.01
P(M=11A=1) = 0.70

John Calls

P(E|J) =
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P(J|E)P(E

P(E) = =55

Bayes rule




2.1 Probabilistic Inference

Suppose we want to compute: P(E|))

P(J|E)!
P(J)
Ea,b P(A =g,8 =0 J|E).
N P(J)

P(E|J) =
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Marginalization
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2.1 Probabilistic Inference

Suppose we want to compute: P(E|))
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P(J=11A=1) = 0.90

B =2 I'DE()J)
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Mary Calls

2.1 Probabilistic Inference

Suppose we want to compute: P(E|))

P(J=11A=0) = 0.05
P(J=11A=1) = 0.90

P(M=11A=0) = 0.01
P(M=11A=1) = 0.70

John Calls

P(E|J) = P(Jlf?]) Bayes rule
Za,bP(A=a’B=b’J|E) T
= P() Marginalization
P(B=bE)P(A=a|B=0bE)P(JIA=a,B=bF
_ 2ap P |E)P(A = a JP(J|A=a ) e
P(J)
= P(J) Conditional independence




A patient is known to have contracted a rare disease which comes in two forms, represented by the values
of a binary random variable D € {0,1}. Symptoms of the disease are represented by the binary random
variables Sy € {0, 1}, and knowledge of the disease is summarized by the belief network:

2.2 Probabilistic Reasoning o16 : o

P A . The conditional probability tables (CPTs) for this belief network are as follows. In the absence of evidence,
o a rt . both forms of the disease are equally likely, with prior probabilities:

P(D=0) = P(D=1) = 5.
In one form of the disease (D =0), the first symptom occurs with probability one,
P(S1=1|D=0) =1,
while the k" symptom (with k >2) occurs with probability

fk=1)
P(S,=1|D=0) = 5
where the function f(k) is defined by
f(k) =28 + (-1)%.
By contrast, in the other form of the disease (D =1), all the symptoms are uniformly likely to be observed,
with
Py =1D=1j= %

for all k. Suppose that on the k*" day of the month, a test is done to determine whether the patient is
exhibiting the k*® symptom, and that each such test returns a positive result. Thus, on the k*" day, the doctor
observes the patient with symptoms {S; =1,S2=1,...,S, =1}. Based on the cumulative evidence, the
doctor makes a new diagnosis each day by computing the ratio:

. _ PD=0181=1,8=1,...,S=1)
k= P(D=15:=1,8:=1,...,8:=1)

If this ratio is greater than 1, the doctor diagnoses the patient with the D =0 form of the disease; otherwise,
with the D=1 form.

(a) Compute the ratio 7 as a function of k. How does the doctor’s diagnosis depend on the day of the
month? Show your work.

(b) Does the diagnosis become more or less certain as more symptoms are observed? Explain.



2.2 Probabilistic Reasoning

e Part A: Represent each term in
the ratio in terms of the given

probabilities:
° P(D),P(S: =1|D)
e Similar approach to 2.1

A patient is known to have contracted a rare disease which comes in two forms, represented by the values
of a binary random variable D € {0,1}. Symptoms of the disease are represented by the binary random
variables Sy, € {0, 1}, and knowledge of the disease is summarized by the belief network:

The conditional probability tables (CPTs) for this belief network are as follows. In the absence of evidence,
both forms of the disease are equally likely, with prior probabilities:

P(D=0)=P(D=1) = %
In one form of the disease (D =0), the first symptom occurs with probability one,
P(S:=1|D=0) =1,
while the k*® symptom (with k >2) occurs with probability

f(k-1)
fk) "

P(S=1|D=0) =

where the function f(k) is defined by
fl) =25+ (-1
By contrast, in the other form of the disease (D =1), all the symptoms are uniformly likely to be observed,
with i
P(Si=1|D=1) = 3

for all k. Suppose that on the k" day of the month, a test is done to determine whether the patient is
exhibiting the k*® symptom, and that each such test returns a positive result. Thus, on the k** day, the doctor
observes the patient with symptoms {S1 =1,5,=1,...,S; =1}. Based on the cumulative evidence, the
doctor makes a new diagnosis each day by computing the ratio:

T = P(D:OISIZI)S2=11'"7Sk:l)
T P(D=18=1,8=L,...,5%=1)
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with the D=1 form.

(a) Compute the ratio 7 as a function of k. How does the doctor’s diagnosis depend on the day of the
month? Show your work.

(b) Does the diagnosis become more or less certain as more symptoms are observed? Explain.




2.2 Probabilistic Reasoning

e Part A: Represent each term in
the ratio in terms of the given
probabilities:

o P(D), P(S; =1|D)

e Similar approach to 2.1

e Part B: take the limit of the ratio
as k goes to infinity. Does this
limit converge or diverge?

A patient is known to have contracted a rare disease which comes in two forms, represented by the values
of a binary random variable D € {0,1}. Symptoms of the disease are represented by the binary random
variables Sy, € {0, 1}, and knowledge of the disease is summarized by the belief network:

The conditional probability tables (CPTs) for this belief network are as follows. In the absence of evidence,
both forms of the disease are equally likely, with prior probabilities:
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P(Si=1|D=1) = 3
for all k. Suppose that on the k" day of the month, a test is done to determine whether the patient is
exhibiting the k*® symptom, and that each such test returns a positive result. Thus, on the k** day, the doctor
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2.3 Conditional Independence

Main idea: Find all
conditional
independence
relations (using
d-separation)

Note: X and Y are
individual nodes while
E is a set of nodes
Hint: Only a subset of
nodes can possibly be
independent.

Consider the DAG shown below, describing the following domain. Given the month of the year, there is
some probability of rain, and also some probability that the sprinkler is turned on. Either of these
events leads to some probability that a puddle forms on the sidewalk, which in turn leads to some proba-

bility that someone has a fall.

()  fem—(E )
(=)

List all the conditional independence relations that must hold in any probability distribution represented by
this DAG. More specifically, list all tuples {X,Y, E'} such that P(X,Y|E) = P(X|E)P(Y|E), where

X,Y € {month,rain, sprinkler,puddle,fall},
E C {month,rain,sprinkler,puddle,fall},
X # Y,

X,Y ¢ E.

Hint: There are sixteen such tuples, not counting those that are equivalent up to exchange of X and Y. Do
any of the tuples contain the case E=()?




Nodes: X € {0,1},Y € {0,1}, Z € {0,1}

. Noisy-OR CPT: P(Z =1|X,Y) =1-(1-p,)X (1-p,)"
2 .4 N 0 I Sy- 0 R Parameters: p. € [0,1],p, € [0,1], p- <py

e Noisy-OR: OR but not guaranteed o pamameteied by & oty OR el o o sbovs, Soppons o tar )
to turn on even X and/or Y are on. OO
o A p p ro a C h e S while the parameters of the noisy-OR model satisfy:

0<p:<py <Ll

o Intuition (see L2)
. . . Consider the following pairs of probabilities. In each case, indicate whether the probability on the left is
@) Mathematlcal derlvatlon (21 -22) equal (=), greater than (>), or less than (<) the probability on the right. The first one has been filled in for

. . you as an example. (You should use your intuition for these problems; you are not required to show work.)
e Notrequired to show work, just B
. . . P(X=1) P(X=1)
fill in the boxes with the

' (@) P(Z=1|X=0,Y =0) D P(Z=1]X=0,Y=1)
correspondlng operator: =,<, or > ® P(Z=1|X=1Y=0) D P(Z=1|X=0,Y=1)
© P(Z=1|X=1,Y =0) D P(Z=1X=1,Y=1)

@ P(X=1) D P(X=1|Z=1)

@ P(X=1) I:, P(X=1]Y=1)
® P(X=1|2=1) D P(X=1]Y=1,Z=1)

@© P(X=1)P(Y=1)P(Z=1) D P(X=1,Y=1,2Z=1)




2.5 Hangman

You are tasked with coding up a
portion of the hangman problem:

e Given a state, find the next
letter with the highest
probability of being in the word.
(predictive probability)

e Stateis represented by the BN
and characters already guessed
(correct and incorrect)

Consider the belief network shown below, where the random variable W stores a five-letter word and the
random variable L; € {A,B,...,Z} reveals only the word’s ith letter. Also, suppose that these five-letter
words are chosen at random from a large corpus of text according to their frequency:

COUNT(w)

PWimss) = 3 COUNT(w')’

where COUNT(w) denotes the number of times that w appears in the corpus and where the denominator is
a sum over all five-letter words. Note that in this model the conditional probability tables for the random
variables L; are particularly simple:

1 if £ is the ith letter of w,

Fls=aW=w) = { 0 otherwise.

Now imagine a game in which you are asked to guess the word w one letter at a time. The rules of this game
are as follows: after each letter (A through Z) that you guess, you'll be told whether the letter appears in
the word and also where it appears. Given the evidence that you have at any stage in this game, the critical
question is what letter to guess next.

W @ & & W

Let’s work an example. Suppose that after three guesses—the letters D, I, M—you've learned that the let-
ter I does not appear, and that the letters D and M appear as follows:

M o B o Mo
Now consider your next guess: call it £. In this game the best guess is the letter £ that maximizes
P(Lz=e or Ly=£ | Li=M, Ly=D, Ly =N, Ly {D, 1,4}, Ls ¢ {D, I, M} ).

In other works, pick the letter £ that is most likely to appear in the blank (unguessed) spaces of the word.
For any letter £ we can compute this probability as follows:

P(Ly=tor Ly=¢ | Ly=M, Ly=D, L;=¥, L, ¢ {D, 1, M}, L,¢{D, 1,4})
= ZP(W:w, Ly=for Ly=¢ | Ly=M,Ly=D, Ls=M, Ly &{D, T,M}, L& {D, I,M}), marginalization
-

3" P(W=w|Li=M, L3=D, L5=H,L2¢{n,I,n},L4¢{D,1,n}) P(Ly=Ffor Ly=(|W =w)
w




2.5 Hangman

Your tasks:

e Translate the hangman
formulation provided into
code

e Provide the following

deliverables:

o Two sets containing the 15 most
frequent and 14 least frequent
words in the corpus

o Table containing the most likely
letter and probability for the
given evidence

where in the third line we have exploited the conditional independence (CI) of the letters L; given the
word W. Inside this sum there are two terms, and they are both easy to compute. In particular, the second
term is more or less trivial:

1 if £ is the second or fourth letter of w
0 otherwise.

P(Ly=for Ly={|W=w) = {
And the first term we obtain from Bayes rule:
P(W =w|L1=W, Ly=D, Ls =M, Ly #{D, 1,4}, L ¢ {D, 1,4}
P(Ly=M, Ly=D, Ls =M, Ly ¢ {D, 1, M}, Ly ¢ {D, I, M}| W =w) P(W =w)

- P(L1=M, L3=D, Ls=M, L ¢ {D, I, M}, L1  {D, I, M} Dayesaue

In the numerator of Bayes rule are two terms; the left term is equal to zero or one (depending on whether
the evidence is compatible with the word w), and the right term is the prior probability P(W = w), as
determined by the empirical word frequencies. The denominator of Bayes rule is given by:

P(L1=H7 L3=Da L5=HaL2¢{Dv IaH}1L4¢{D11aH})
= Y P(W=w,L=M,Ly=D,Ls=M, Ly &{D,1,M}, Ly ¢{D,1,M}),
w

Z P(sz)P(L1=H1 L3=D1 L5=M3 L2¢{Dv I, M}l L4 ¢{D1 I,M}|W=UJ), p“)dua rule

where again all the right terms inside the sum are equal to zero or one. Note that the denominator merely
sums the empirical frequencies of words that are compatible with the observed evidence.

Now let’s consider the general problem. Let E denote the evidence at some intermediate round of the
game: in general, some letters will have been guessed correctly and their places revealed in the word, while
other letters will have been guessed incorrectly and thus revealed to be absent. There are two essential
computations. The first is the posterior probability, obtained from Bayes rule:

P(E|\W =w) P(W=w)
Yw P(E|W =w') P(W =w')’
The second key computation is the predictive probability, based on the evidence, that the letter £ appears
somewhere in the word:

P(L,:tfor somei€{1,2,3, 4,5}|E) = ZP(L;:[for somei€{1,2,3,4, 5}}W=w)P(W=w|E).
w

P(W=u|E) =




Submission

Submit just the .py file to HW 2 -
Coding problem

Feel free to modify any function
signatures (except those which
have do not modify) or add
addition functions

We will run your run() function
and compare with our solution

code

Due Oct 13th, 11:59 PM (both

parts!)

CSE_150A_250A_FA25 Fall2025

Course ID: 1132306

Description

Edit your course description on the Course Settings page.

$ Active Assignments Released Due (PDT) v & Submissions
HW 2 - Coding Problem 0OCT 7, 2025 12:00 PM OCT 13, 2025 11:59 PM 3
ate: OCT 14, 2025 11:59 PM
c -
Homework 1 SEP 30, 2025 6:03 PM OCT 6, 2025 11:59 PM 247

Late Du

e Date: OCT 7, 2025 11:59 PM

% Graded $

Entry Code: Y2W25G
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That's all folks!



