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Review



MCMC - Gibbs Sampling

• Initialization
Fix evidence nodes to observed values e, e′.
Initialize non-evidence nodes to random values.

E’E

. . .

Q Q’

• Repeat N times
Pick a non-evidence node X at random.
Use Bayes rule to compute P(X|BX).
Resample x ∼ P(X|BX).
Take a snapshot of all the nodes in the BN.

• Estimate
Count the snapshots N(q,q′) ≤ N with Q=q and Q′=q′.

P(Q=q,Q′=q′|E=e, E′=e′) ≈ N(q,q′)
N
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Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducibile
and aperiodic) Markov chain over the non-evidence nodes
of the BN.

2. The stationary distribution of this Markov chain is equal to
the BN’s posterior distribution over its non-evidence
nodes.

3. Theoretical guarantees for mixing time, in practice we use
burn in time.

4. The estimates from MCMC converge in the limit:

lim
N→∞

N(q,q′)
N → P(Q=q,Q′=q′|E=e, E′=e′)
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MCMC versus likelihood weighting (LW)

• How they sample

LW
MCMC

}
samples non-evidence nodes from

{
P(X|pa(X))
P(X|BX)

• Cost per sample

LW can read off P(X|pa(X)) from each CPT.
MCMC must compute P(X|BX) before each sample.

• Convergence

LW is slow for rare evidence in leaf nodes.
MCMC can be much faster in this situation.
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Learning in BNs



Learning in BNs

• Where do BNs come from?

Sometimes an expert can provide the DAG and CPTs.
But not always — especially not in very complex domains.

• What is the alternative?

With sufficient data, we can estimate useful models.
This is the central idea of machine learning.

• What are some applications?

Language modeling
Visual object recognition
Recommender systems
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Maximum likelihood (ML) estimation

• Here’s a simple idea:

Model data by the BN that assigns it the highest
probability.
In other words, choose the DAG and CPTs to maximize

P(observed data |DAG & CPTs).

This probability is known as the likelihood.

• But is this too simple?

The data may be unrepresentative or too limited.
This is one failure mode of ML estimation.
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Learning with complete data and tabular CPTs

ASSUMPTIONS

1. The DAG is fixed (and known) over a finite set of
discrete random variables {X1, X2, . . . , Xn}.

2. The data consists of T complete (or fully observed)
instantiations of all the nodes in the BN.

3. CPTs enumerate P(Xi=x|pa(Xi) = π) as lookup tables;
each must be estimated for all values of x and π.
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Example

• Fixed DAG over discrete random variables

X3

X1

X2

X1 ∈ {1, 2, 3}
X2 ∈ {1, 2, 3, 4}
X3 ∈ {1, 2, 3, 4, 5}

• Data set
example x1 x2 x3

1 1 4 5
2 3 2 4
3 2 1 3
...

...
...

...
T 1 3 2

Note that if T is
sufficiently large,
some rows are
destined to repeat.

We can also denote the data set as
{(
x(t)1 , x(t)2 , x(t)3

)}T
t=1
.
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Example

• Fixed DAG over discrete random variables

X3

X1

X2

X1 ∈ {1, 2, 3}
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X3 ∈ {1, 2, 3, 4, 5}

• Data set
example x1 x2 x3

1 1 4 5
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...

...
...

...
T 1 3 2

How to choose the
CPTs so that the BN
maximizes the probability
of this data set?
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ML estimation

• IID assumption

The examples are assumed to be independent and identically
distributed (IID) from the joint distribution of the BN.

• Probability of IID data

P(data) =
T∏

t=1
P
(
X1=x(t)1 , X2=x(t)2 , . . . , Xn=x(t)n

)

• Probability of tth example

P
(
X1=x(t)1 , X2=x(t)2 , . . . , Xn=x(t)n

)

=
n∏

i=1
P
(
Xi=x(t)i

∣∣∣X1=x(t)1 , . . . , Xi−1=x(t)i−1

)
product rule

=
n∏

i=1
P
(
Xi=x(t)i

∣∣∣pa(Xi)= pa(t)
i

)
conditional independence
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Computing the log-likelihood
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T∏
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P
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x(t)1 , x(t)2 , . . . , x(t)n

)
IID
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T∏

t=1

n∏

i=1
P
(
x(t)i

∣∣∣pa(t)i
)

product rule & CI

=
T∑

t=1

n∑

i=1
log P

(
x(t)i

∣∣∣pa(t)i
)

log pq = log p+ log q

=
n∑

i=1

T∑

t=1
log P

(
x(t)i

∣∣∣pa(t)i
)

︸ ︷︷ ︸
sum over examples

sums can be reordered
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Counting co-occurrences

• Counts

Let count(Xi=x, pai = π) denote the number of examples
where Xi=x and pai=π.

• Example
x1 x2 x3
1 4 5
3 2 4
2 1 3
2 1 4
1 3 5
1 3 2

count(X1=1) = 3
count(X1=2) = 2
count(X1=3) = 1

count(X2=1, X1=2) = 2
count(X2=3, X1=1) = 2

...
count(X3=5, X1=1) = 2

Note: these counts can be compiled in one pass through the data set.
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Computing the log-likelihood

Next: replace the unweighted sum over examples at each node
by a weighted sum over its values and those of its parents.

L =
n∑

i=1

T∑

t=1
log P

(
x(t)i

∣∣∣pa(t)i
)

unweighted

=
n∑

i=1

∑

x

∑

π

count(Xi=x, pai=π) log P(Xi=x|pai=π)

weighted

These two expressions compute the exact same sum!

But the latter has a much more appealing form ...
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Interpreting the log-likelihood

L =
∑

i

∑

x

∑

π

constants of the data︷ ︸︸ ︷
count(Xi=x, pai=π) log P(Xi=x|pai=π)︸ ︷︷ ︸

CPTs to optimize

• The log-likelihood for complete data is a triple sum over

i — the nodes in the BN
x — the values of each node Xi
π — the values π of the parents of Xi

• How to optimize?

Intuitively, the larger the count(Xi=x, pai=π),
the larger we should choose P(Xi=x|pai=π).
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Decomposing the log-likelihood

• Log-likelihood for BN

L =
∑

i

∑

π

∑

x
count(Xi=x, pai=π) log P(Xi=x|pai=π)

• Contribution from row π of ith node’s CPT

Liπ =
∑

x
count(Xi=x, pai=π) log P(Xi=x|pai=π)

• Divide and conquer

The overall optimization over L reduces to many simpler
and smaller optimizations over each Liπ .

This is a special property of ML estimation for complete data.
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ML Estimation

• Problem

For each node Xi in the BN, and for each row π of its CPT,
our goal is to maximize

Liπ =
∑

x
count(Xi=x, pai=π) log P(Xi=x|pai=π)

subject to two constraints:

1.
∑

x P(Xi=x|pai=π) = 1 (normalized)
2. P(Xi=x|pai=π) ≥ 0 (nonnegative)

• Shorthand

Cα = count(Xi=α, pai=π)

pα = P(Xi=α|pai=π)
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How to maximize∑
α Cα log pα such

that∑α pα = 1
and pα ≥ 0?
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Maximizing the likelihood

• Compute the normalized counts:

Define qα = Cα∑
β Cβ

so that
∑

α qα = 1 .

Note that qα is itself a distribution.

• All these problems have the same solution:

Maximize
∑

α Cα log pα such that
∑

α pα = 1, pα ≥ 0.

Minimize ∑
α Cα log 1

pα such that
∑

α pα = 1, pα ≥ 0.

Minimize
∑

α Cα log Cα
pα such that

∑
α pα = 1, pα ≥ 0.

Minimize
∑

α qα log qα
pα such that

∑
α pα = 1, pα ≥ 0.
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← KL distance

Solution: pα = qα
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ML solution from normalized counts

PML(Xi=x|pai=π) =
count(Xi=x, pai=π)∑
x′ count(Xi=x′, pai=π)

• For nodes with parents:

PML(Xi=x|pai=π) =
count(Xi=x, pai=π)

count(pai=π)

• For root nodes:

PML(Xi=x) =
count(Xi=x)

T
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ML Example

Q. Which of the following
is a parameter we would
like to estimate?
A. P(X=1)
B. P(Y=1)
C. P(X=1|Y=1)
D. More than one of
these

E. None of these
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ML Example

Q. Not including comple-
ments (e.g. P(X=1) and
P(X=0)), how many differ-
ent parameters are there
to estimate?
A. 3
B. 4
C. 5
D. 7
E. More than 7
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ML Example

Q. What is the ML esti-
mate for P(Z=1|X=0, Y=0)?

A. 0
B. 1/6
C. 1/2
D. 1
E. None of the above
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ML Example

Q. Which parameter has
an undefined ML esti-
mate?
A. P(X=1)
B. P(Y=1|X=0)
C. P(Z=1|X=0, Y=0)
D. P(Z=1|X=1, Y=1)
E. More than one of
the above
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Properties of ML solution

• Asymptotically correct:

The more data you have, the better your estimates.
If P(x1, x2, . . . , xn) > 0, then

lim
T→∞

PML(x1, x2, . . . , xn) = P(x1, x2, . . . , xn)

• But problematic for sparse data:

PML(Xi=x|pai=π) =
count(Xi=x, pai=π)

count(pai=π)

This is undefined when count(pai=π) = 0.
Otherwise it is zero when count(Xi=x, pai=π) = 0.
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Statistical language modeling

Let wℓ denote the ℓth word in a sentence (or text).
How to model P(w1,w2, . . . ,wL)?

automatic speech recognition machine translation
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Context and expectations in language

“It’s hard to wreck a nice beach.”

“It’s hard to recognize speech.”
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Simplifying assumptions

1. Finite context

To predict the ℓth word, it is sufficient to consider a
finite number of words that precede it:

P(wℓ|w1,w2, . . . ,wℓ−1) = P(wℓ|wℓ−(n−1), . . . ,wℓ−1︸ ︷︷ ︸
n−1 previous words

)

2. Position invariance

Predictions should not depend on where the context
occurs in the sentence or text:

P(Wℓ=w′|wℓ−(n−1), . . . ,wℓ−1)

= P(Ws+ℓ=w′|Ws+ℓ−(n−1)=wℓ−(n−1), . . . ,Ws+ℓ−1=wℓ−1)
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Markov models

P(w1,w2, . . . ,wL)

=
∏

ℓ

P(wℓ|w1,w2, . . . ,wℓ−1) product rule

=
∏

ℓ

P(wℓ|wℓ−(n−1), . . . ,wℓ−1) conditional independence
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Markov models

Models of different orders

n = 1 unigram

n = 2 bigram

n = 3 trigram
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Bigram models

Note that the same CPT
for P(wℓ=w′|wℓ−1=w) is
used at each node (for

ℓ>1).

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w′.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

PML(wℓ=w′|wℓ−1=w) =
count(w→ w′)

count(w→ ∗) =
count(w→ w′)∑
w′′ count(w→ w′′)
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Problems with ML estimates

1. No generalization to unseen n-grams:

ML estimates assign zero probability to n-grams that
do not appear in the training corpus.

2. The larger n, the worse the problem:

n-gram counts become increasingly sparse as n increases.
Many possible (but improbable) n-grams are not observed.

You will explore this problem further in HW 4.
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Naive Bayes models



Document classification

• Setup

Each document can be labeled by one of m topics.
Each document consists of words from a finite vocabulary.

• Random variables

Let Y ∈ {1, 2, . . . ,m} denote the label.
Let Xi ∈ {0, 1} denote whether the ith word appears.

This representation maps
each document to a sparse
binary vector of fixed length.
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All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dullboy..
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.

sports [0 1 1 0 0 … 0 1 0]

204 / 239



Belief network

This DAG makes a fairly drastic assumption of conditional
independence:

P(X1, . . . , Xn|Y) =
n∏

i=1
P(Xi|Y)

For this reason it is called a Naive Bayes model.
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Naive Bayes model

Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

• Collect a large corpus of documents.
• Label each document by a topic.
• Estimate the CPTs by maximizing the likelihood.
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ML estimation

PML(Y=y) = fraction of documents with
label y in the corpus

PML(Xi=1|Y=y) = fraction of documents with
label y that contain the ith
word in the vocabulary

Once the model is learned, what is it good for?
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Inference

How to classify
an unlabeled
document?

P(Y=y|X1, X2, . . . , Xn)

=
P(X1, X2, . . . , Xn|Y=y)P(Y=y)

P(X1, X2, . . . , Xn)
Bayes rule

=
P(Y=y)

∏n
i=1 P(Xi|Y=y)

P(X1, X2, . . . , Xn)
conditional independence

=
P(Y=y)

∏n
i=1 P(Xi|Y=y)∑

y′ P(Y=y′)
∏n
i=1 P(Xi|Y=y′)

normalization
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Strengths and weaknesses

Strengths

• Easy to learn from data.
• Easy to classify unlabeled documents.

Weaknesses

• Naive Bayes assumption of conditional independence
• No information about word ordering
• Binarization of word counts
• Etc ...
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That’s all folks!
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