

CSE 150A-250A AI: Probabilistic Models

Lecture 8

Fall 2025

Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

Agenda

Review

Learning in BNs

Markov models

Naive Bayes models

Review

MCMC - Gibbs Sampling

- Initialization

Fix evidence nodes to observed values e, e' .

Initialize non-evidence nodes to random values.

- Repeat N times**

Pick a non-evidence node X at random.

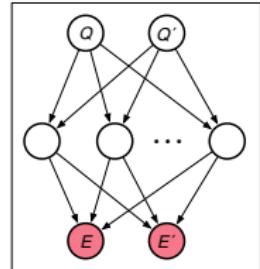
Use **Bayes rule** to compute $P(X|B_X)$.

Resample $x \sim P(X|B_X)$.

Take a snapshot of all the nodes in the BN.

- Estimate

Count the snapshots $N(q, q') \leq N$ with $Q=q$ and $Q'=q'$.



$$P(Q=q, Q'=q' | E=e, E'=e') \approx \frac{N(q, q')}{N}$$

Properties of MCMC

Properties of MCMC

Under reasonable conditions...

Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (**irreducible** and **aperiodic**) Markov chain over the non-evidence nodes of the BN.



Under reasonable conditions...

1. This sampling procedure defines an ergodic (**irreducible** and **aperiodic**) Markov chain over the non-evidence nodes of the BN.
2. The stationary distribution of this Markov chain is equal to the BN's posterior distribution over its non-evidence nodes.

Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducible and aperiodic) Markov chain over the non-evidence nodes of the BN.
2. The stationary distribution of this Markov chain is equal to the BN's posterior distribution over its non-evidence nodes.
time to stationary dist.
3. Theoretical guarantees for *mixing time*, in practice we use *burn in time*.
4. The estimates from MCMC converge in the limit:

$$\lim_{N \rightarrow \infty} \frac{N(q, q')}{N} \rightarrow P(Q=q, Q'=q' | E=e, E'=e')$$

MCMC versus likelihood weighting (LW)

MCMC versus likelihood weighting (LW)

- How they sample

MCMC versus likelihood weighting (LW)

- How they sample

$\left. \begin{matrix} \text{LW} \\ \text{MCMC} \end{matrix} \right\}$ samples non-evidence nodes from $\left\{ \begin{matrix} P(X|\text{pa}(X)) \\ P(X|B_X) \end{matrix} \right\}$

MCMC versus likelihood weighting (LW)

- How they sample

$$\left. \begin{array}{c} \text{LW} \\ \text{MCMC} \end{array} \right\} \text{samples non-evidence nodes from} \left\{ \begin{array}{c} P(X|\text{pa}(X)) \\ P(X|B_X) \end{array} \right\}$$

- Cost per sample

MCMC versus likelihood weighting (LW)

- How they sample

$$\left. \begin{array}{c} \text{LW} \\ \text{MCMC} \end{array} \right\} \text{samples non-evidence nodes from} \left\{ \begin{array}{c} P(X|\text{pa}(X)) \\ P(X|B_X) \end{array} \right\}$$

- Cost per sample

LW can read off $P(X|\text{pa}(X))$ from each CPT.

MCMC versus likelihood weighting (LW)

- How they sample

$$\left. \begin{array}{c} \text{LW} \\ \text{MCMC} \end{array} \right\} \text{samples non-evidence nodes from} \left\{ \begin{array}{c} P(X|\text{pa}(X)) \\ P(X|B_X) \end{array} \right\}$$

- Cost per sample

LW can read off $P(X|\text{pa}(X))$ from each CPT.

MCMC must compute $P(X|B_X)$ before each sample.

MCMC versus likelihood weighting (LW)

- How they sample

$$\left. \begin{array}{c} \text{LW} \\ \text{MCMC} \end{array} \right\} \text{samples non-evidence nodes from} \left\{ \begin{array}{c} P(X|\text{pa}(X)) \\ P(X|B_X) \end{array} \right\}$$

- Cost per sample

LW can read off $P(X|\text{pa}(X))$ from each CPT.

MCMC must compute $P(X|B_X)$ before each sample.

- Convergence

MCMC versus likelihood weighting (LW)

- How they sample

$$\left. \begin{array}{c} \text{LW} \\ \text{MCMC} \end{array} \right\} \text{samples non-evidence nodes from} \left\{ \begin{array}{c} P(X|\text{pa}(X)) \\ P(X|B_X) \end{array} \right\}$$

- Cost per sample

LW can read off $P(X|\text{pa}(X))$ from each CPT.

MCMC must compute $P(X|B_X)$ before each sample.

- Convergence

LW is slow for rare evidence in leaf nodes.

MCMC versus likelihood weighting (LW)

- How they sample

$\left. \begin{array}{c} \text{LW} \\ \text{MCMC} \end{array} \right\}$ samples non-evidence nodes from $\left\{ \begin{array}{c} P(X|\text{pa}(X)) \\ P(X|B_X) \end{array} \right\}$

- Cost per sample

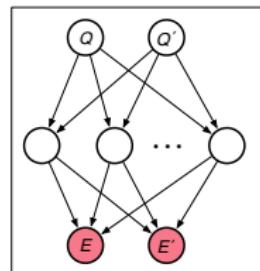
LW can read off $P(X|\text{pa}(X))$ from each CPT.

MCMC must compute $P(X|B_X)$ before each sample.

- Convergence

LW is slow for rare evidence in leaf nodes.

MCMC can be much faster in this situation.



Learning in BNs

Learning in BNs

- Where do BNs come from?

- Where do BNs come from?

Sometimes an expert can provide the DAG and CPTs.

- Where do BNs come from?

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- Where do BNs come from?

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- What is the alternative?

- **Where do BNs come from?**

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- **What is the alternative?**

With sufficient data, we can estimate useful models.

- **Where do BNs come from?**

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- **What is the alternative?**

With sufficient data, we can estimate useful models.

This is the central idea of *machine learning*.

- **Where do BNs come from?**

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- **What is the alternative?**

With sufficient data, we can estimate useful models.

This is the central idea of *machine learning*.

- **What are some applications?**

- **Where do BNs come from?**

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- **What is the alternative?**

With sufficient data, we can estimate useful models.

This is the central idea of *machine learning*.

- **What are some applications?**

Language modeling

- **Where do BNs come from?**

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- **What is the alternative?**

With sufficient data, we can estimate useful models.

This is the central idea of *machine learning*.

- **What are some applications?**

Language modeling

Visual object recognition

- **Where do BNs come from?**

Sometimes an expert can provide the DAG and CPTs.

But not always — especially not in very complex domains.

- **What is the alternative?**

With sufficient data, we can estimate useful models.

This is the central idea of *machine learning*.

- **What are some applications?**

Language modeling

Visual object recognition

Recommender systems

Maximum likelihood (ML) estimation

Maximum likelihood (ML) estimation

- Here's a simple idea:

Maximum likelihood (ML) estimation

- Here's a simple idea:

Model data by the BN that assigns it the highest probability.

Maximum likelihood (ML) estimation

- Here's a simple idea:

Model data by the BN that assigns it the highest probability.

In other words, choose the DAG and CPTs to **maximize**

$$P(\text{observed data} \mid \text{DAG \& CPTs}).$$

Maximum likelihood (ML) estimation

- Here's a simple idea:

Model data by the BN that assigns it the highest probability.

In other words, choose the DAG and CPTs to **maximize**

$$P(\text{observed data} \mid \text{DAG \& CPTs}).$$

This probability is known as the **likelihood**.

Maximum likelihood (ML) estimation

- Here's a simple idea:

Model data by the BN that assigns it the highest probability.

In other words, choose the DAG and CPTs to **maximize**

$$P(\text{observed data} \mid \text{DAG \& CPTs}).$$

This probability is known as the **likelihood**.

- But is this too simple?

Maximum likelihood (ML) estimation

- Here's a simple idea:

Model data by the BN that assigns it the highest probability.

In other words, choose the DAG and CPTs to **maximize**

$$P(\text{observed data} \mid \text{DAG \& CPTs}).$$

This probability is known as the **likelihood**.

- But is this too simple?

The data may be unrepresentative or too limited.

Maximum likelihood (ML) estimation

- Here's a simple idea:

Model data by the BN that assigns it the highest probability.

In other words, choose the DAG and CPTs to **maximize**

$$P(\text{observed data} \mid \text{DAG \& CPTs}).$$

This probability is known as the **likelihood**.

- But is this too simple?

The data may be unrepresentative or too limited.

This is one failure mode of ML estimation.

Learning with complete data and tabular CPTs

ASSUMPTIONS

ASSUMPTIONS

1. The DAG is fixed (and known) over a finite set of discrete random variables $\{X_1, X_2, \dots, X_n\}$.

ASSUMPTIONS

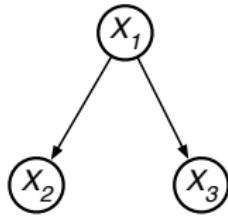
1. The DAG is fixed (and known) over a finite set of discrete random variables $\{X_1, X_2, \dots, X_n\}$.
2. The data consists of T complete (or fully observed) instantiations of all the nodes in the BN.

ASSUMPTIONS

1. The DAG is fixed (and known) over a finite set of discrete random variables $\{X_1, X_2, \dots, X_n\}$.
2. The data consists of T complete (or fully observed) instantiations of all the nodes in the BN.
3. CPTs enumerate $P(X_i=x|pa(X_i) = \pi)$ as lookup tables; each must be **estimated** for all values of x and π .

Example

- Fixed DAG over discrete random variables



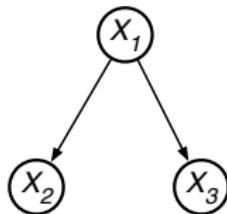
$$X_1 \in \{1, 2, 3\}$$

$$X_2 \in \{1, 2, 3, 4\}$$

$$X_3 \in \{1, 2, 3, 4, 5\}$$

Example

- Fixed DAG over discrete random variables



$$X_1 \in \{1, 2, 3\}$$

$$X_2 \in \{1, 2, 3, 4\}$$

$$X_3 \in \{1, 2, 3, 4, 5\}$$

- Data set

example	x_1	x_2	x_3
1	1	4	5
2	3	2	4
3	2	1	3
⋮	⋮	⋮	⋮
T	1	3	2

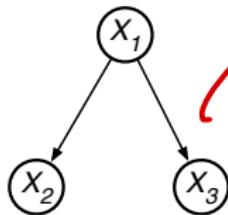
→ 1 data point

⋮

⋮
T

Example

- Fixed DAG over discrete random variables



$$X_1 \in \{1, 2, 3\}$$

$$X_2 \in \{1, 2, 3, 4\}$$

$$X_3 \in \{1, 2, 3, 4, 5\}$$

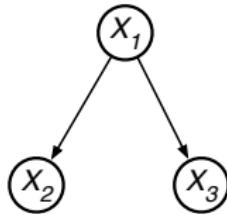
- Data set

example	x_1	x_2	x_3
1	1	4	5
2	3	2	4
3	2	1	3
⋮	⋮	⋮	⋮
T	1	3	2

Note that if T is sufficiently large, some rows are destined to repeat.

Example

- Fixed DAG over discrete random variables



$$X_1 \in \{1, 2, 3\}$$

$$X_2 \in \{1, 2, 3, 4\}$$

$$X_3 \in \{1, 2, 3, 4, 5\}$$

- Data set

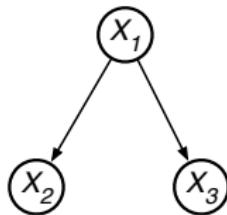
example	x_1	x_2	x_3
1	1	4	5
2	3	2	4
3	2	1	3
⋮	⋮	⋮	⋮
T	1	3	2

Note that if T is sufficiently large, some rows are destined to repeat.

We can also denote the data set as $\left\{ \left(x_1^{(t)}, x_2^{(t)}, x_3^{(t)} \right) \right\}_{t=1}^T$.

Example

- Fixed DAG over discrete random variables



$$X_1 \in \{1, 2, 3\}$$

$$X_2 \in \{1, 2, 3, 4\}$$

$$X_3 \in \{1, 2, 3, 4, 5\}$$

- Data set

example	x_1	x_2	x_3
1	1	4	5
2	3	2	4
3	2	1	3
⋮	⋮	⋮	⋮
T	1	3	2

How to choose the CPTs so that the BN maximizes the probability of this data set?

ML estimation

ML estimation

- IID assumption

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

$$P(\text{data}) =$$

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

$$\underline{P(data)} = \prod_{t=1}^T P \left(\underline{X_1 = x_1^{(t)}, X_2 = x_2^{(t)}, \dots, X_n = x_n^{(t)}} \right)$$

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

$$P(\text{data}) = \prod_{t=1}^T P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)})$$

- Probability of t^{th} example

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

$$P(\text{data}) = \prod_{t=1}^T P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)})$$

- Probability of t^{th} example

$$P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)})$$

ML estimation

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

$$P(\text{data}) = \prod_{t=1}^T P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)})$$

- Probability of t^{th} example

$$\begin{aligned} & P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)}) \\ &= \prod_{i=1}^n P(X_i=x_i^{(t)} \mid X_1=x_1^{(t)}, \dots, X_{i-1}=x_{i-1}^{(t)}) \quad \boxed{\text{product rule}} \end{aligned}$$

ML estimation

- IID assumption

The examples are assumed to be *independent and identically distributed* (IID) from the joint distribution of the BN.

- Probability of IID data

likelihood $\rightarrow P(\text{data}) = \prod_{t=1}^T P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)})$ *all rows x.*

- Probability of t^{th} example

$$P(X_1=x_1^{(t)}, X_2=x_2^{(t)}, \dots, X_n=x_n^{(t)})$$
$$= \prod_{i=1}^n P(X_i=x_i^{(t)} \mid X_1=x_1^{(t)}, \dots, X_{i-1}=x_{i-1}^{(t)})$$

product rule

each row $\rightarrow \prod_{i=1}^n P(X_i=x_i^{(t)} \mid \text{pa}(X_i)=\text{pa}_i^{(t)})$ conditional independence

Computing the log-likelihood

$$\mathcal{L} = \log P(\text{data})$$

Computing the log-likelihood

$$\begin{aligned}\mathcal{L} &= \log P(\text{data}) \\ &= \log \prod_{t=1}^T P(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)})\end{aligned}$$

Computing the log-likelihood

$$\begin{aligned}\mathcal{L} &= \log P(\text{data}) \\ &= \log \prod_{t=1}^T P(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)}) \quad \boxed{\text{IID}}\end{aligned}$$

Computing the log-likelihood

$$\mathcal{L} = \log P(\text{data})$$

$$= \log \prod_{t=1}^T P(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)})$$

IID

$$= \log \prod_{t=1}^T \prod_{i=1}^n P(x_i^{(t)} \mid \text{pa}_i^{(t)})$$

Computing the log-likelihood

$$\mathcal{L} = \log P(\text{data})$$

$$= \log \prod_{t=1}^T P(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)})$$

IID

$$= \log \prod_{t=1}^T \prod_{i=1}^n P(x_i^{(t)} \mid \text{pa}_i^{(t)})$$

product rule & CI

Computing the log-likelihood

$$\begin{aligned}\mathcal{L} &= \log P(\text{data}) \\ &= \log \prod_{t=1}^T P(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)}) \quad \boxed{\text{IID}} \\ &= \log \prod_{t=1}^T \prod_{i=1}^n P(x_i^{(t)} \mid \text{pa}_i^{(t)}) \quad \boxed{\text{product rule \& CI}} \\ &= \sum_{t=1}^T \sum_{i=1}^n \log P(x_i^{(t)} \mid \text{pa}_i^{(t)})\end{aligned}$$

Computing the log-likelihood

$$\begin{aligned}\mathcal{L} &= \log P(\text{data}) \\ &= \log \prod_{t=1}^T P(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)}) \quad \boxed{\text{IID}} \\ &= \log \prod_{t=1}^T \prod_{i=1}^n P(x_i^{(t)} \mid \text{pa}_i^{(t)}) \quad \boxed{\text{product rule \& CI}} \\ &= \sum_{t=1}^T \sum_{i=1}^n \log P(x_i^{(t)} \mid \text{pa}_i^{(t)}) \quad \boxed{\log pq = \log p + \log q}\end{aligned}$$

Computing the log-likelihood

$$\begin{aligned}\mathcal{L} &= \log P(\text{data}) \\ &= \log \prod_{t=1}^T P\left(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)}\right) && \boxed{\text{IID}} \\ &= \log \prod_{t=1}^T \prod_{i=1}^n P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right) && \boxed{\text{product rule \& CI}} \\ &= \sum_{t=1}^T \sum_{i=1}^n \log P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right) && \boxed{\log pq = \log p + \log q} \\ &= \sum_{i=1}^n \underbrace{\sum_{t=1}^T \log P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right)}_{\text{sum over examples}}\end{aligned}$$

Computing the log-likelihood

$$\begin{aligned}\mathcal{L} &= \log P(\text{data}) \\ &= \log \prod_{t=1}^T P\left(x_1^{(t)}, x_2^{(t)}, \dots, x_n^{(t)}\right) && \boxed{\text{IID}} \\ &= \log \prod_{t=1}^T \prod_{i=1}^n P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right) && \boxed{\text{product rule \& CI}} \\ &= \sum_{t=1}^T \sum_{i=1}^n \log P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right) && \boxed{\log pq = \log p + \log q} \\ &= \sum_{i=1}^n \underbrace{\sum_{t=1}^T \log P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right)}_{\text{sum over examples}} && \boxed{\text{sums can be reordered}}\end{aligned}$$

Counting co-occurrences

- Counts

Counting co-occurrences

- Counts

Let $\text{count}(X_i = x, \text{pa}_i = \pi)$ denote the number of examples where $X_i = \underline{x}$ and $\text{pa}_i = \underline{\pi}$.

Counting co-occurrences

- Counts

Let $\text{count}(X_i = x, \text{pa}_i = \pi)$ denote the number of examples where $X_i = x$ and $\text{pa}_i = \pi$.

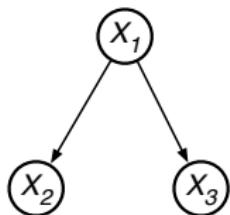
- Example

Counting co-occurrences

- Counts

Let $\text{count}(X_i = x, \text{pa}_i = \pi)$ denote the number of examples where $X_i = x$ and $\text{pa}_i = \pi$.

- Example



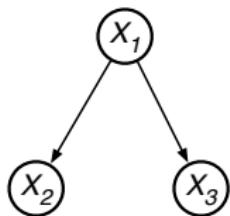
X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
0	3	5
0	3	2

$$\text{count}(X_1=1) = 3$$

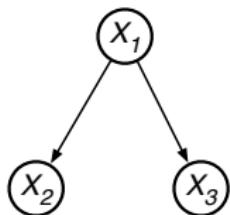
Count($X_1=2$) =

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

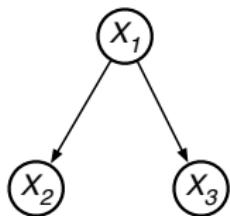
$$\begin{aligned}\text{count}(X_1=1) &= 3 \\ \text{count}(X_1=2) &= 2\end{aligned}$$

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

$$\text{count}(X_1=1) = 3$$

$$\text{count}(X_1=2) = 2$$

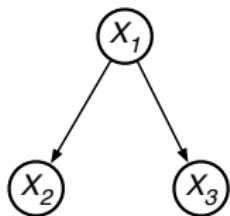
$$\text{count}(X_1=3) = 1$$

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

$$\text{count}(X_1=1) = 3$$

$$\text{count}(X_1=2) = 2$$

$$\text{count}(X_1=3) = 1$$

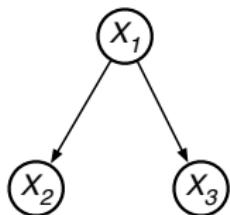
$$\text{count}(X_2=1, X_1=2)$$

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

$$\text{count}(X_1=1) = 3$$

$$\text{count}(X_1=2) = 2$$

$$\text{count}(X_1=3) = 1$$

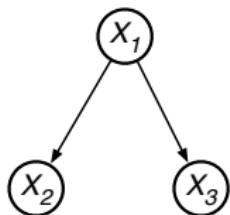
$$\text{count}(X_2=1, X_1=2) = 2$$

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

$$\text{count}(X_1=1) = 3$$

$$\text{count}(X_1=2) = 2$$

$$\text{count}(X_1=3) = 1$$

$$\text{count}(X_2=1, X_1=2) = 2$$

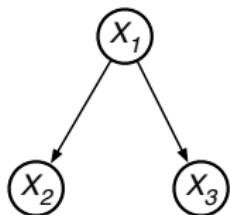
$$\text{count}(X_2=3, X_1=1) = 2$$

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

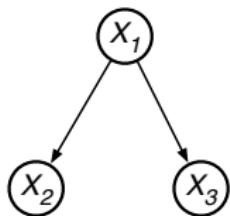
$\text{count}(X_1=1)$	=	3
$\text{count}(X_1=2)$	=	2
$\text{count}(X_1=3)$	=	1
$\text{count}(X_2=1, X_1=2)$	=	2
$\text{count}(X_2=3, X_1=1)$	=	2
⋮		
$\text{count}(X_3=5, X_1=1)$	=	2

Counting co-occurrences

- Counts

Let $\text{count}(X_i=x, \text{pa}_i = \pi)$ denote the number of examples where $X_i=x$ and $\text{pa}_i=\pi$.

- Example



X_1	X_2	X_3
1	4	5
3	2	4
2	1	3
2	1	4
1	3	5
1	3	2

$\text{count}(X_1=1)$	=	3
$\text{count}(X_1=2)$	=	2
$\text{count}(X_1=3)$	=	1
$\text{count}(X_2=1, X_1=2)$	=	2
$\text{count}(X_2=3, X_1=1)$	=	2
		⋮
$\text{count}(X_3=5, X_1=1)$	=	2

Note: these counts can be compiled in one pass through the data set.

Computing the log-likelihood

Computing the log-likelihood

Next: replace the **unweighted** sum over examples at each node by a **weighted** sum over its values and those of its parents.

Computing the log-likelihood

Next: replace the **unweighted** sum over examples at each node by a **weighted** sum over its values and those of its parents.

$$\mathcal{L} = \sum_{i=1}^n \sum_{t=1}^T \log P(x_i^{(t)} \mid \text{pa}_i^{(t)}) \quad \boxed{\text{unweighted}}$$

Computing the log-likelihood

Next: replace the **unweighted** sum over examples at each node by a **weighted** sum over its values and those of its parents.

$$\begin{aligned}\mathcal{L} &= \sum_{i=1}^n \sum_{t=1}^T \log P(x_i^{(t)} \mid \text{pa}_i^{(t)}) \quad \boxed{\text{unweighted}} \\ &= \sum_{i=1}^n \sum_{\substack{x \\ \pi}} \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x \mid \text{pa}_i=\pi) \quad \boxed{\text{weighted}}\end{aligned}$$

Computing the log-likelihood

Next: replace the **unweighted** sum over examples at each node by a **weighted** sum over its values and those of its parents.

$$\begin{aligned} \mathcal{L} &= \sum_{i=1}^n \sum_{t=1}^T \log P(x_i^{(t)} \mid \text{pa}_i^{(t)}) \quad \boxed{\text{unweighted}} \\ &= \sum_{i=1}^n \sum_x \sum_{\pi} \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x \mid \text{pa}_i=\pi) \quad \boxed{\text{weighted}} \end{aligned}$$

A - got it!
B - Much!

These two expressions compute the exact same sum!

Computing the log-likelihood

Next: replace the **unweighted** sum over examples at each node by a **weighted** sum over its values and those of its parents.

$$\begin{aligned}\mathcal{L} &= \sum_{i=1}^n \sum_{t=1}^T \log P\left(x_i^{(t)} \mid \text{pa}_i^{(t)}\right) \quad \boxed{\text{unweighted}} \\ &= \sum_{i=1}^n \sum_x \sum_{\pi} \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x | \text{pa}_i=\pi) \quad \boxed{\text{weighted}}\end{aligned}$$

These two expressions compute the exact same sum!

But the latter has a much more appealing form ...

Interpreting the log-likelihood

Interpreting the log-likelihood

$$\mathcal{L} = \sum_i \sum_x \sum_{\pi} \underbrace{\text{count}(X_i=x, \text{pa}_i=\pi)}_{\text{constants of the data}} \underbrace{\log P(X_i=x | \text{pa}_i=\pi)}_{\text{CPTs to optimize}}$$

Interpreting the log-likelihood

$$\mathcal{L} = \sum_i \sum_x \sum_{\pi} \underbrace{\text{count}(X_i=x, \text{pa}_i=\pi)}_{\text{constants of the data}} \underbrace{\log P(X_i=x | \text{pa}_i=\pi)}_{\text{CPTs to optimize}}$$

- The log-likelihood for complete data is a triple sum over
 - i — the nodes in the BN
 - x — the values of each node X_i
 - π — the values π of the parents of X_i

Interpreting the log-likelihood

$$\mathcal{L} = \sum_i \sum_x \sum_{\pi} \underbrace{\text{count}(X_i=x, \text{pa}_i=\pi)}_{\text{constants of the data}} \underbrace{\log P(X_i=x | \text{pa}_i=\pi)}_{\text{CPTs to optimize}}$$

- The log-likelihood for complete data is a triple sum over
 - i — the nodes in the BN
 - x — the values of each node X_i
 - π — the values π of the parents of X_i
- How to optimize?

Interpreting the log-likelihood

$$\mathcal{L} = \sum_i \sum_x \sum_{\pi} \underbrace{\text{count}(X_i=x, \text{pa}_i=\pi)}_{\text{constants of the data}} \underbrace{\log P(X_i=x|\text{pa}_i=\pi)}_{\text{CPTs to optimize}}$$

- The log-likelihood for complete data is a triple sum over
 - i — the nodes in the BN
 - x — the values of each node X_i
 - π — the values π of the parents of X_i
- How to optimize?

Intuitively, the larger the $\text{count}(X_i=x, \text{pa}_i=\pi)$, the larger we should choose $P(X_i=x|\text{pa}_i=\pi)$.

Decomposing the log-likelihood

Decomposing the log-likelihood

- Log-likelihood for BN

Decomposing the log-likelihood

- Log-likelihood for BN

$$\mathcal{L} = \sum_i \sum_{\pi} \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x | \text{pa}_i=\pi)$$

Decomposing the log-likelihood

- Log-likelihood for BN

$$\mathcal{L} = \sum_i \sum_{\pi} \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x | \text{pa}_i=\pi)$$

- Contribution from row $\underline{\pi}$ of \underline{i}^{th} node's CPT

Decomposing the log-likelihood

- Log-likelihood for BN

$$\mathcal{L} = \sum_i \sum_{\pi} \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Contribution from row π of i^{th} node's CPT

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

Decomposing the log-likelihood

- Log-likelihood for BN

$$\mathcal{L} = \sum_i \sum_{\pi} \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Contribution from row π of i^{th} node's CPT

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Divide and conquer

Decomposing the log-likelihood

- Log-likelihood for BN

$$\mathcal{L} = \sum_i \sum_{\pi} \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Contribution from row π of i^{th} node's CPT

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Divide and conquer

The overall optimization over \mathcal{L} reduces to many simpler and smaller optimizations over each $\mathcal{L}_{i\pi}$.

Decomposing the log-likelihood

- Log-likelihood for BN

$$\mathcal{L} = \sum_i \sum_{\pi} \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Contribution from row π of i^{th} node's CPT

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- Divide and conquer

The overall optimization over \mathcal{L} reduces to many simpler and smaller optimizations over each $\mathcal{L}_{i\pi}$.

This is a special property of ML estimation for **complete** data.

ML Estimation

- Problem

- **Problem**

For each node X_i in the BN,

- Problem

For each node X_i in the BN, and for each row π of its CPT,

- Problem

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

- **Problem**

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints:

- **Problem**

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints:

1. $\sum_x P(X_i=x|\text{pa}_i=\pi) = 1$ (normalized)

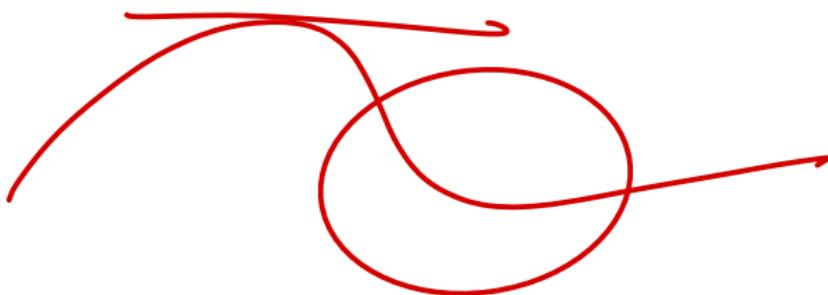
- Problem

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints:

1. $\sum_x P(X_i=x|\text{pa}_i=\pi) = 1$ (normalized)
2. $P(X_i=x|\text{pa}_i=\pi) \geq 0$ (nonnegative)



- **Problem**

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints:

1. $\sum_x P(X_i=x|\text{pa}_i=\pi) = 1$ *(normalized)*
2. $P(X_i=x|\text{pa}_i=\pi) \geq 0$ *(nonnegative)*

- **Shorthand**

- **Problem**

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints:

1. $\sum_x P(X_i=x|\text{pa}_i=\pi) = 1$ *(normalized)*
2. $P(X_i=x|\text{pa}_i=\pi) \geq 0$ *(nonnegative)*

- **Shorthand**

$$C_\alpha = \text{count}(X_i=\alpha, \text{pa}_i=\pi)$$

- **Problem**

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints:

1. $\sum_x P(X_i=x|\text{pa}_i=\pi) = 1$ *(normalized)*
2. $P(X_i=x|\text{pa}_i=\pi) \geq 0$ *(nonnegative)*

- **Shorthand**

$$C_\alpha = \text{count}(X_i=\alpha, \text{pa}_i=\pi)$$

$$p_\alpha = P(X_i=\alpha|\text{pa}_i=\pi)$$

- Problem

For each node X_i in the BN, and for each row π of its CPT, our goal is to maximize

$$\mathcal{L}_{i\pi} = \sum_x \text{count}(X_i=x, \text{pa}_i=\pi) \log P(X_i=x|\text{pa}_i=\pi)$$

subject to two constraints

$$1. \quad \sum_x P(X_i=x|\text{pa}_i=\pi) = 1 \quad (\text{normalized})$$

$$2. \quad P(X_i=x|\text{pa}_i=\pi) \geq 0 \quad (\text{nonnegative})$$

- Shorthand

$$C_\alpha = \text{count}(X_i=\alpha, \text{pa}_i=\pi) \quad p_\alpha = P(X_i=\alpha|\text{pa}_i=\pi)$$

$(1 - \sum_x P(X_i=x|\text{pa}_i=\pi))$ Lagrange

\parallel

How to maximize
 $\sum_\alpha C_\alpha \log p_\alpha$ such
 that $\sum_\alpha p_\alpha = 1$
 and $p_\alpha \geq 0$?

Maximizing the likelihood

Maximizing the likelihood

- Compute the normalized counts:

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{c_\alpha}{\sum_\beta c_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{c_\alpha}{\sum_\beta c_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{c_\alpha}{\sum_\beta c_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{C_\alpha}{\sum_\beta C_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximize $\sum_\alpha C_\alpha \log p_\alpha$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{c_\alpha}{\sum_\beta c_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximize $\left(-\sum_\alpha c_\alpha \log p_\alpha \right)$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha c_\alpha \log \frac{1}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{C_\alpha}{\sum_\beta C_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximize $\sum_\alpha C_\alpha \log p_\alpha$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha C_\alpha \log \frac{1}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha C_\alpha \log \frac{C_\alpha}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{C_\alpha}{\sum_\beta C_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximize $\sum_\alpha C_\alpha \log p_\alpha$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha C_\alpha \log \frac{1}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha C_\alpha \log \frac{C_\alpha}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha q_\alpha \log \frac{q_\alpha}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Maximizing the likelihood

- Compute the normalized counts:

Define $q_\alpha = \frac{c_\alpha}{\sum_\beta c_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximize $\sum_\alpha c_\alpha \log p_\alpha$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha c_\alpha \log \frac{1}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha c_\alpha \log \frac{c_\alpha}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\underbrace{\sum_\alpha q_\alpha \log \frac{q_\alpha}{p_\alpha}}_{\text{KL}(q, p)}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

← KL distance

Maximizing the likelihood

- Compute the normalized counts:

$\cancel{P} \leq$
Define $q_\alpha = \frac{c_\alpha}{\sum_\beta c_\beta}$ so that $\sum_\alpha q_\alpha = 1$.

Note that q_α is itself a distribution.

- All these problems have the same solution:

Maximize $\sum_\alpha c_\alpha \log p_\alpha$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha c_\alpha \log \frac{1}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\sum_\alpha c_\alpha \log \frac{c_\alpha}{p_\alpha}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

Minimize $\underbrace{\sum_\alpha q_\alpha \log \frac{q_\alpha}{p_\alpha}}_{\text{KL}(q, p)}$ such that $\sum_\alpha p_\alpha = 1, p_\alpha \geq 0$.

← **KL distance**

Solution: $p_\alpha = q_\alpha$

ML solution from normalized counts

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

- For nodes with parents:

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

- For nodes with parents:

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) =$$

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

- For nodes with parents:

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

- For nodes with parents:

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

- For root nodes:

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

- For nodes with parents:

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

- For root nodes:

$$P_{\text{ML}}(X_i=x) =$$

ML solution from normalized counts

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\sum_{x'} \text{count}(X_i=x', \text{pa}_i=\pi)}$$

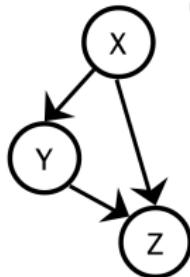
- For nodes with parents:

$$P_{\text{ML}}(X_i=x|\text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

- For root nodes:

$$P_{\text{ML}}(X_i=x) = \frac{\text{count}(X_i=x)}{T}$$

ML Example

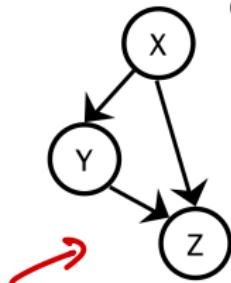


X, Y and Z
are Boolean
variables

Observed data:

X	Y	Z
0	0	1
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	1	1
1	0	0
0	1	1
0	0	1
0	1	1
1	0	0

ML Example



X, Y and Z
are Boolean
variables

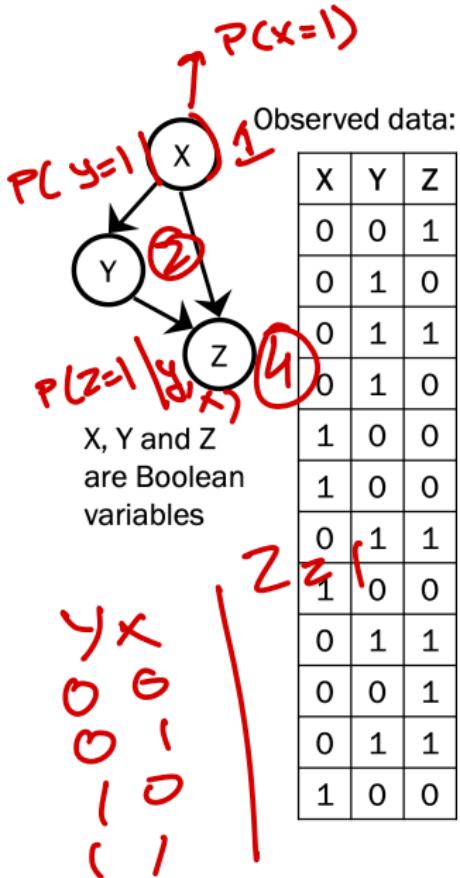
Observed data:

X	Y	Z
0	0	1
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	1	1
1	0	0
0	1	1
0	0	1
0	1	1
1	0	0

Q. Which of the following
is a parameter we would
like to estimate?

- A. $P(X=1)$ ✓
- B. $P(Y=1)$ ✗
- C. $P(X=1|Y=1)$ ✗
- D. More than one of
these
- E. None of these ✗

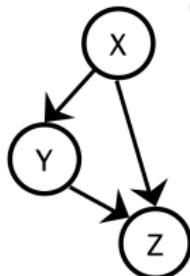
ML Example



Q. Not including complements (e.g. $P(X=1)$ and $P(X=0)$), how many different parameters are there to estimate?

- A. 3
- B. 4
- C. 5
- D. 7
- E. More than 7

ML Example



X, Y and Z
are Boolean
variables

Observed data:

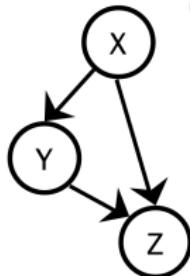
X	Y	Z
0	0	1
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	1	1
1	0	0
0	1	1
0	0	1
0	1	1
1	0	0

$$\frac{8}{2}$$

Q. What is the ML estimate for $\underline{P(Z=1|X=0, Y=0)}$?

- A. 0
- B. 1/6
- C. 1/2
- D. 1
- E. None of the above

ML Example



X, Y and Z
are Boolean
variables

Observed data:

X	Y	Z
0	0	1
0	1	0
0	1	1
0	1	0
1	0	0
1	0	0
0	1	1
1	0	0
0	1	1
0	0	1
0	1	1
1	0	0

Q. Which parameter has
an undefined ML esti-
mate?

- A. $P(X=1)$
- B. $P(Y=1|X=0)$
- C. $P(Z=1|X=0, Y=0)$
- D. $P(Z=1|X=1, Y=1)$
- E. More than one of
the above

Properties of ML solution

Properties of ML solution

- Asymptotically correct:

- **Asymptotically correct:**

The more data you have, the better your estimates.

If $P(x_1, x_2, \dots, x_n) > 0$, then

$$\lim_{T \rightarrow \infty} P_{\text{ML}}(x_1, x_2, \dots, x_n) = P(x_1, x_2, \dots, x_n)$$

- **Asymptotically correct:**

The more data you have, the better your estimates.

If $P(x_1, x_2, \dots, x_n) > 0$, then

$$\lim_{T \rightarrow \infty} P_{\text{ML}}(x_1, x_2, \dots, x_n) = P(x_1, x_2, \dots, x_n)$$

- But problematic for sparse data:

- **Asymptotically correct:**

The more data you have, the better your estimates.

If $P(x_1, x_2, \dots, x_n) > 0$, then

$$\lim_{T \rightarrow \infty} P_{\text{ML}}(x_1, x_2, \dots, x_n) = P(x_1, x_2, \dots, x_n)$$

- **But problematic for sparse data:**

$$P_{\text{ML}}(X_i=x | \text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

Properties of ML solution

- **Asymptotically correct:**

The more data you have, the better your estimates.

If $P(x_1, x_2, \dots, x_n) > 0$, then

$$\lim_{T \rightarrow \infty} P_{\text{ML}}(x_1, x_2, \dots, x_n) = P(x_1, x_2, \dots, x_n)$$

- But problematic for sparse data:

$$P_{\text{ML}}(X_i=x | \text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

This is **undefined** when $\text{count}(\text{pa}_i=\pi) = 0$.

Properties of ML solution

- **Asymptotically correct:**

The more data you have, the better your estimates.

If $P(x_1, x_2, \dots, x_n) > 0$, then

$$\lim_{T \rightarrow \infty} P_{\text{ML}}(x_1, x_2, \dots, x_n) = P(x_1, x_2, \dots, x_n)$$

- But problematic for sparse data:

$$P_{\text{ML}}(X_i=x | \text{pa}_i=\pi) = \frac{\text{count}(X_i=x, \text{pa}_i=\pi)}{\text{count}(\text{pa}_i=\pi)}$$

This is **undefined** when $\text{count}(\text{pa}_i=\pi) = 0$.

Otherwise it is **zero** when $\text{count}(X_i=x, \text{pa}_i=\pi) = 0$.

Markov models

Statistical language modeling

Statistical language modeling

Let w_ℓ denote the ℓ^{th} word in a sentence (or text).

Statistical language modeling

Let w_ℓ denote the ℓ^{th} word in a sentence (or text).

How to model $P(w_1, w_2, \dots, w_L)$?

Statistical language modeling

Let w_ℓ denote the ℓ^{th} word in a sentence (or text).

How to model $P(w_1, w_2, \dots, w_L)$?

automatic speech recognition

machine translation

1

うさぎの穴をまっさかさま

アリスはお前でおねえさんのよにすわって、なんにもする事がないのでとても面白「いいくつ」には呑めていました。一、二回はおねえさんの悩んでいる本をの字でひたかれてた。そこには絵本も会話をないのです。話や会話をない本なんて、なんの本にもたたない「いじね」で、アリスは思いました。

そこでアリスは、涙のなかで、ひなぎくのきさをつくれた楽しいださうけれど、
さきあがってひなぎくをつむわちのんどくさいし、どうしようかと考えていました（とはいっても、涙で書いし、とってもねむくて頭もまぶくなかったので、これもむへん
だったのですが）。そこへいまなり、ピンクの服をしたうさぎが近くを走ってきたのです。

う音の内は、しばらくはトンネルみたいにまっすぐついで、それからいきなりズシンと下におひでいました。それがさくさくいきなりで、アリスがとまるうとかうひもあれぼこそ、気がつくとなにやら深い戸戸みたいなところを落っこちているところでした。

CHAPTER I.

Down the Rabbit-Hole

Alice was beginning to get very tired of sitting by her sister on the bank, and of having nothing to do: once or twice she had peeped into the book her sister was reading, but it had no pictures or conversations in it, "and what is the use of a book," thought Alice "without pictures or conversation?"

So she was considering in her own mind (as well as she could, for the hot day made her feel very sleepy and stupid), whether the pleasure of making a daisy-chain would be worth the trouble of getting up and picking the daisies, when suddenly a White Rabbit

There was nothing so VERY remarkable in that, nor did Alice think it so VERY much out of the way to hear the Rabbit say to itself, "Oh! don't cry! I shall be late!" when she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it all seemed quite natural; but when the Rabbit actually TOOK A WATCH OUT OF ITS WAISTCOAT-POCKET, and looked at it, and then hurried on, Alice started to her feet, for it flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, and, burning with curiosity, she ran across the field after it, and fortunately was just in time to see it pop down a large rabbit-hole under the hedge.

In another moment down went Alice after it, never once considering how in the world

The rabbit-hole went straight on like a tunnel for some way, and then dipped suddenly down, so suddenly that Alice had not a moment to think about stopping herself before she found herself falling down a very deep well.

Context and expectations in language

Context and expectations in language

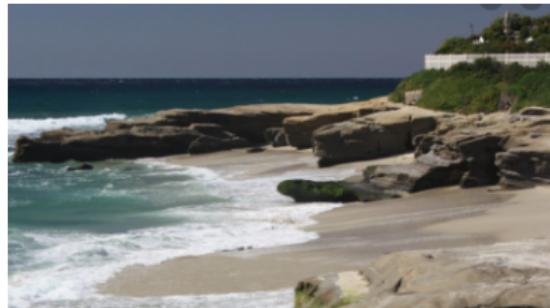
Context and expectations in language

“It’s hard to wreck a nice beach.”

Context and expectations in language

“It’s hard to wreck a nice beach.”

Context and expectations in language



“It’s hard to wreck a nice beach.”

“It’s hard to recognize speech.”

Simplifying assumptions

Simplifying assumptions

1. Finite context

Simplifying assumptions

1. Finite context

To predict the ℓ^{th} word, it is sufficient to consider a *finite* number of words that precede it:

Simplifying assumptions

1. Finite context

To predict the ℓ^{th} word, it is sufficient to consider a *finite* number of words that precede it:

$$P(w_\ell | w_1, w_2, \dots, w_{\ell-1}) = P(w_\ell | \underbrace{w_{\ell-(n-1)}, \dots, w_{\ell-1}}_{n-1 \text{ previous words}})$$

Simplifying assumptions

1. Finite context

To predict the ℓ^{th} word, it is sufficient to consider a *finite* number of words that precede it:

$$P(w_\ell | w_1, w_2, \dots, w_{\ell-1}) = P(w_\ell | \underbrace{w_{\ell-(n-1)}, \dots, w_{\ell-1}}_{n-1 \text{ previous words}})$$

2. Position invariance

Simplifying assumptions

1. Finite context

To predict the ℓ^{th} word, it is sufficient to consider a *finite* number of words that precede it:

$$P(w_\ell | w_1, w_2, \dots, w_{\ell-1}) = P(w_\ell | \underbrace{w_{\ell-(n-1)}, \dots, w_{\ell-1}}_{n-1 \text{ previous words}})$$

2. Position invariance

Predictions should not depend on where the context occurs in the sentence or text:

Simplifying assumptions

1. Finite context

To predict the ℓ^{th} word, it is sufficient to consider a *finite* number of words that precede it:

$$P(w_\ell | w_1, w_2, \dots, w_{\ell-1}) = P(w_\ell | \underbrace{w_{\ell-(n-1)}, \dots, w_{\ell-1}}_{n-1 \text{ previous words}})$$

2. Position invariance

Predictions should not depend on where the context occurs in the sentence or text:

$$P(w_\ell = w' | w_{\ell-(n-1)}, \dots, w_{\ell-1})$$

=

Simplifying assumptions

1. Finite context

To predict the ℓ^{th} word, it is sufficient to consider a *finite* number of words that precede it:

$$P(w_\ell | w_1, w_2, \dots, w_{\ell-1}) = P(w_\ell | \underbrace{w_{\ell-(n-1)}, \dots, w_{\ell-1}}_{n-1 \text{ previous words}})$$

2. Position invariance

Predictions should not depend on where the context occurs in the sentence or text:

$$P(w_\ell = w' | w_{\ell-(n-1)}, \dots, w_{\ell-1})$$

$$= P(w_{s+\ell} = w' | w_{s+\ell-(n-1)} = w_{\ell-(n-1)}, \dots, w_{s+\ell-1} = w_{\ell-1})$$

Markov models

Markov models

$$P(w_1, w_2, \dots, w_L)$$

$$P(w_1, w_2, \dots, w_L)$$

$$= \prod_{\ell} P(w_{\ell} | w_1, w_2, \dots, w_{\ell-1}) \quad \boxed{\text{product rule}}$$

$$P(w_1, w_2, \dots, w_L)$$

$$= \prod_{\ell} P(w_{\ell} | w_1, w_2, \dots, w_{\ell-1}) \quad \boxed{\text{product rule}}$$

$$= \prod_{\ell} P(w_{\ell} | w_{\ell-(\textcolor{orange}{n}-1)}, \dots, w_{\ell-1}) \quad \boxed{\text{conditional independence}}$$

$$P(w_1, w_2, \dots, w_L)$$

$$= \prod_{\ell} P(w_{\ell} | w_1, w_2, \dots, w_{\ell-1}) \quad \boxed{\text{product rule}}$$

$$= \prod_{\ell} P(w_{\ell} | w_{\ell-(\textcolor{orange}{n}-1)}, \dots, w_{\ell-1}) \quad \boxed{\text{conditional independence}}$$

Models of different orders

Models of different orders

$n = 1$

Models of different orders

$n = 1$ unigram

Models of different orders

$n = 1$ unigram



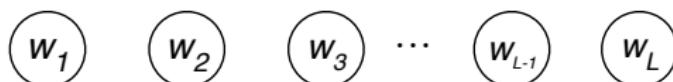
Models of different orders

$n = 1$ unigram

$n = 2$

Models of different orders

$n = 1$ unigram



$n = 2$ bigram

Models of different orders

$n = 1$ unigram

$n = 2$ bigram

Models of different orders

$n = 1$ unigram

$n = 2$ bigram

$n = 3$

Models of different orders

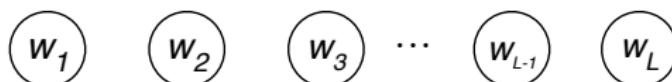
$n = 1$ unigram

$n = 2$ bigram

$n = 3$ trigram

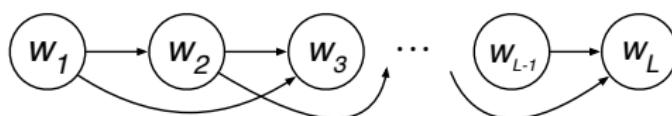
Models of different orders

$n = 1$ unigram



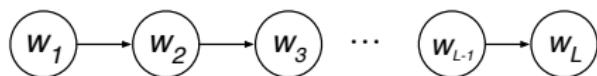
$n = 2$ bigram

$n = 3$ trigram

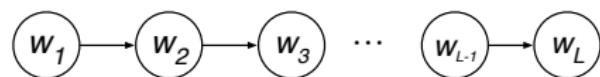


Bigram models

Bigram models



Bigram models



$\ell > 1$).

Note that the same CPT for $P(w_\ell=w'|w_{\ell-1}=w)$ is used at each node (for $\ell > 1$).

Bigram models

$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Bigram models

$\ell > 1$.

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

all unique words
↗

Collect a large corpus of text with a well-defined vocabulary.

Bigram models

$\ell > 1$).

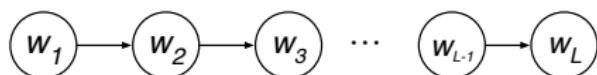
Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Bigram models



$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

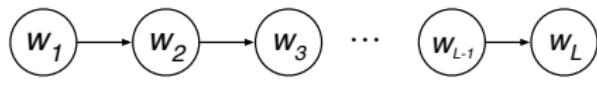
How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Bigram models



$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Estimate from empirical frequencies:

Bigram models

$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

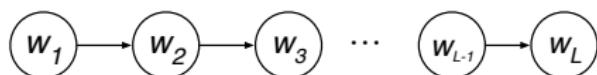
Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Estimate from empirical frequencies:

$$P_{\text{ML}}(w_\ell = w' | w_{\ell-1} = w) =$$

Bigram models



$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Estimate from empirical frequencies:

$$P_{\text{ML}}(w_\ell = w' | w_{\ell-1} = w) = \text{count}(w \rightarrow w')$$

Bigram models

$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Estimate from empirical frequencies:

$$P_{\text{ML}}(w_\ell = w' | w_{\ell-1} = w) = \frac{\text{count}(w \rightarrow w')}{\text{count}(w \rightarrow *)}$$

Bigram models

$\ell > 1$).

Note that the same CPT for $P(w_\ell = w' | w_{\ell-1} = w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Estimate from empirical frequencies:

$$P_{\text{ML}}(w_\ell = w' | w_{\ell-1} = w) = \frac{\text{count}(w \rightarrow w')}{\text{count}(w \rightarrow *))} = \frac{\text{count}(w \rightarrow w')}$$

Bigram models



$\ell > 1$).

Note that the same CPT for $P(w_\ell=w'|w_{\ell-1}=w)$ is used at each node (for

How to learn?

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w' .

Count how often word w is followed by any word.

Estimate from empirical frequencies:

$$P_{\text{ML}}(w_\ell=w'|w_{\ell-1}=w) = \frac{\text{count}(w \rightarrow w')}{\text{count}(w \rightarrow *)} = \frac{\text{count}(w \rightarrow w')}{\sum_{w''} \text{count}(w \rightarrow w'')}$$

Problems with ML estimates

1. No generalization to unseen n -grams:

1. No generalization to unseen n -grams:

ML estimates assign **zero** probability to n -grams that do not appear in the training corpus.

1. No generalization to unseen n -grams:

ML estimates assign **zero** probability to n -grams that do not appear in the training corpus.

2. The larger n , the worse the problem:

1. No generalization to unseen n -grams:

ML estimates assign **zero** probability to n -grams that do not appear in the training corpus.

2. The larger n , the worse the problem:

n -gram counts become increasingly sparse as n increases.

1. No generalization to unseen n -grams:

ML estimates assign **zero** probability to n -grams that do not appear in the training corpus.

2. The larger n , the worse the problem:

n -gram counts become increasingly sparse as n increases. Many possible (but improbable) n -grams are not observed.

1. No generalization to unseen n -grams:

ML estimates assign **zero** probability to n -grams that do not appear in the training corpus.

2. The larger n , the worse the problem:

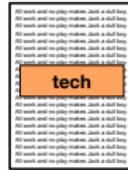
n -gram counts become increasingly sparse as n increases. Many possible (but improbable) n -grams are not observed.

You will explore this problem further in HW 4.

Naive Bayes models

Document classification

Document classification

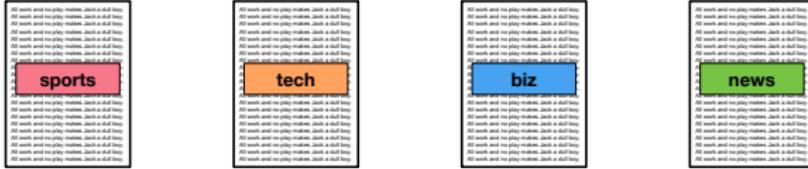


Document classification

- Setup



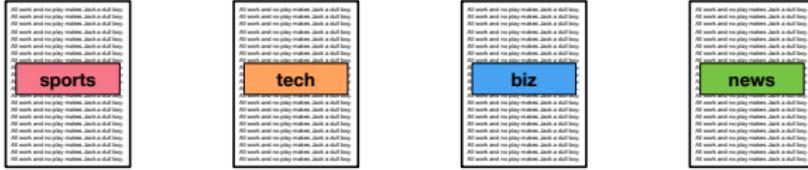
Document classification



- **Setup**

Each document can be labeled by one of m topics.

Document classification

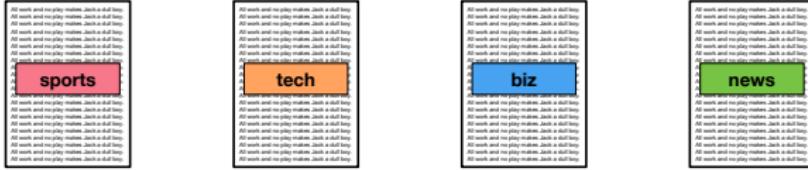


- **Setup**

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.

Document classification



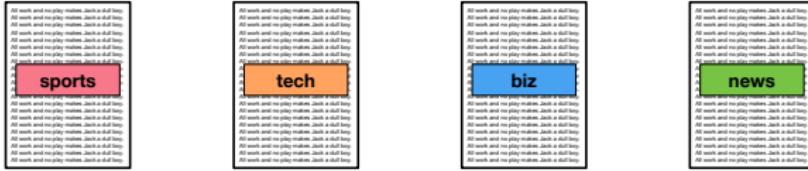
- **Setup**

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.

- **Random variables**

Document classification



- **Setup**

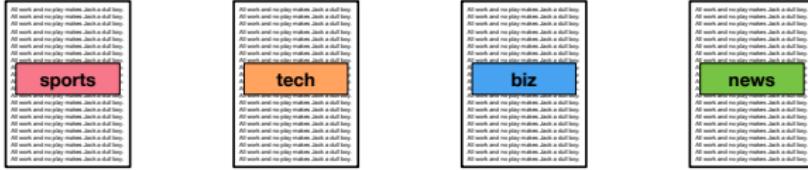
Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.

- **Random variables**

Let $Y \in \{1, 2, \dots, m\}$ denote the label.

Document classification



- **Setup**

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.

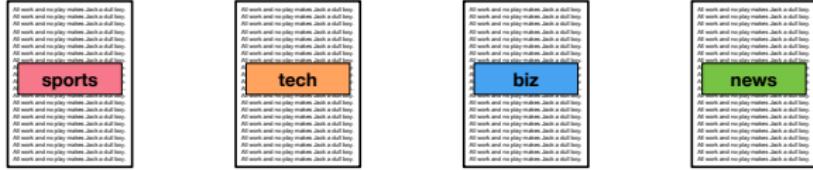
- **Random variables**

Let $Y \in \{1, 2, \dots, m\}$ denote the label.

Let $X_i \in \{0, 1\}$ denote whether the i^{th} word appears.

i

Document classification



- **Setup**

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.

- **Random variables**

Let $Y \in \{1, 2, \dots, m\}$ denote the label.

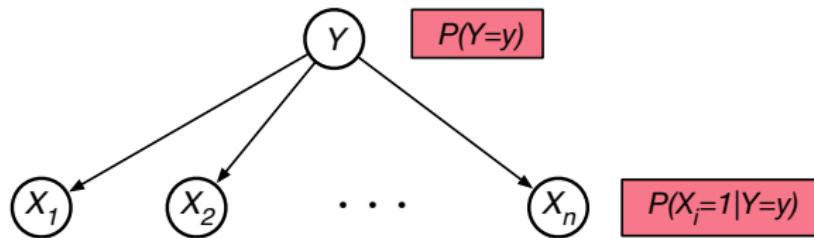
Let $X_i \in \{0, 1\}$ denote whether the i^{th} word appears.

This representation maps
each document to a sparse
binary vector of fixed length.

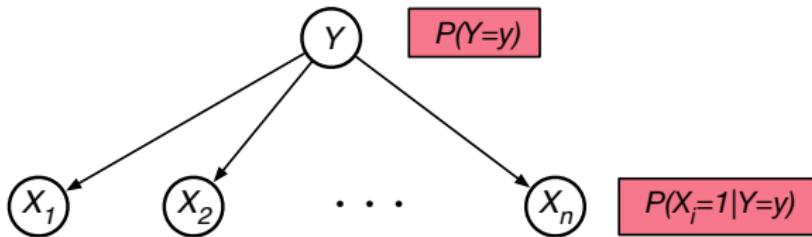
$[0 \ 1 \ 1 \ 0 \ 0 \ \dots \ 0 \ 1 \ 0]$

Belief network

Belief network



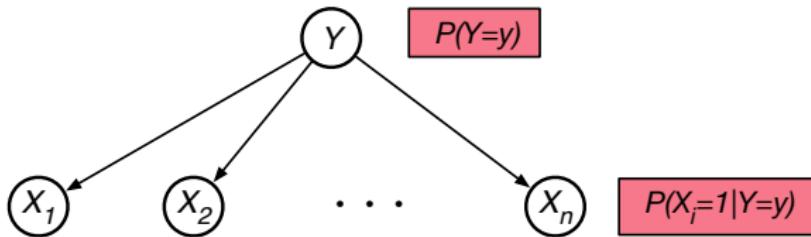
Belief network



This DAG makes a fairly drastic assumption of conditional independence:

$$P(X_1, \dots, X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

Belief network



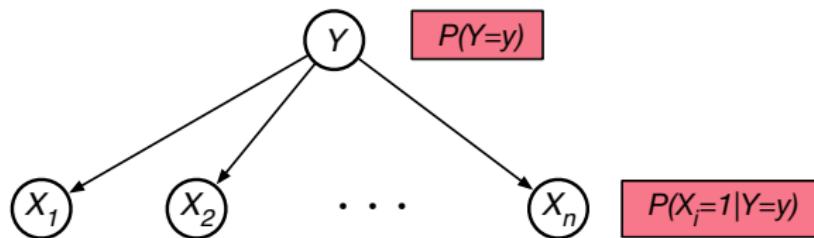
This DAG makes a fairly drastic assumption of conditional independence:

$$P(X_1, \dots, X_n | Y) = \prod_{i=1}^n P(X_i | Y)$$

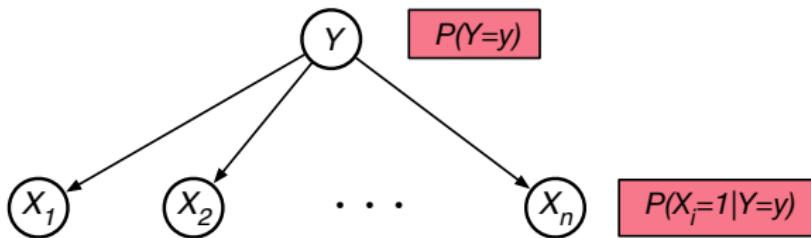
For this reason it is called a Naive Bayes model.

Naive Bayes model

Naive Bayes model

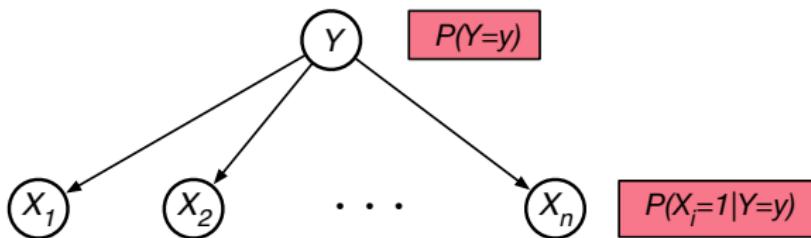


Naive Bayes model



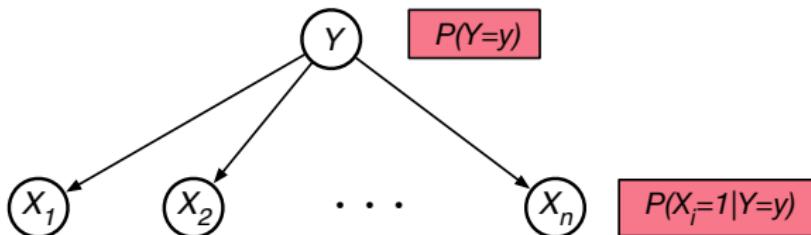
Suppose this DAG is given, but the CPTs are not specified.

Naive Bayes model



Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

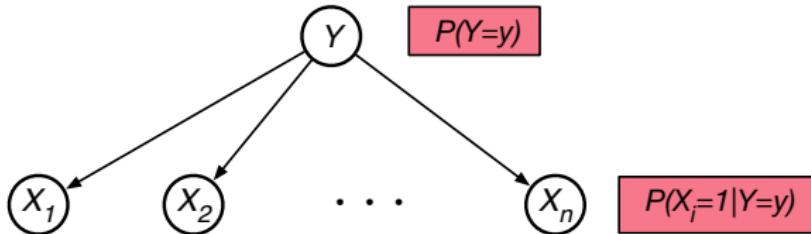
Naive Bayes model



Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

- Collect a large corpus of documents.

Naive Bayes model



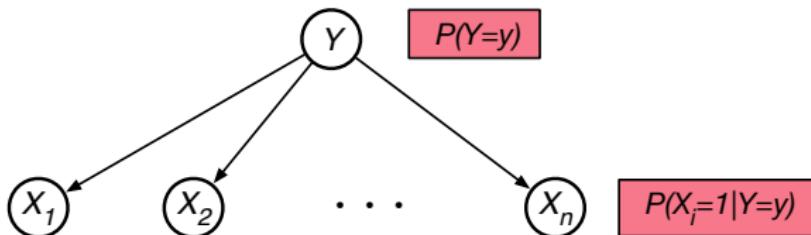
Suppose this DAG is given, but the CPTs are not specified.

How to learn the CPTs from data?

- Collect a large corpus of documents.
- Label each document by a topic.

→ *Supervised learning*

Naive Bayes model

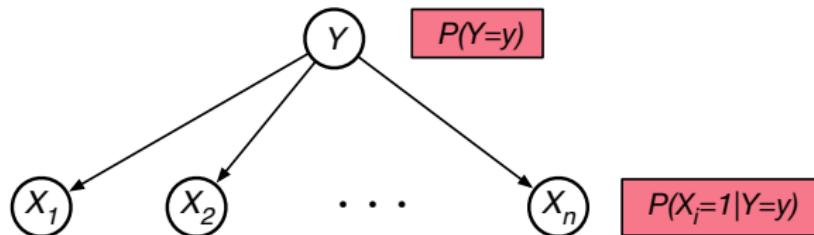


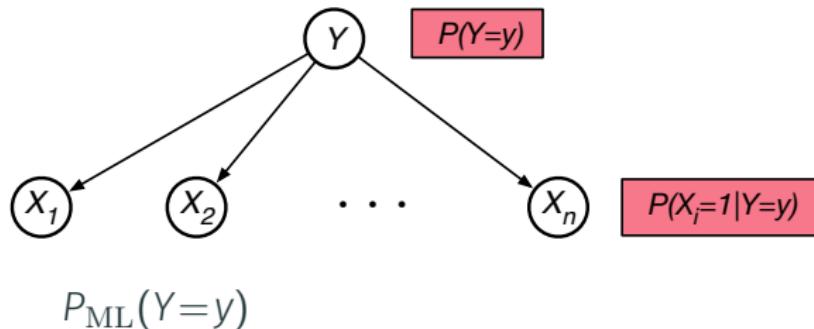
Suppose this DAG is given, but the CPTs are not specified.

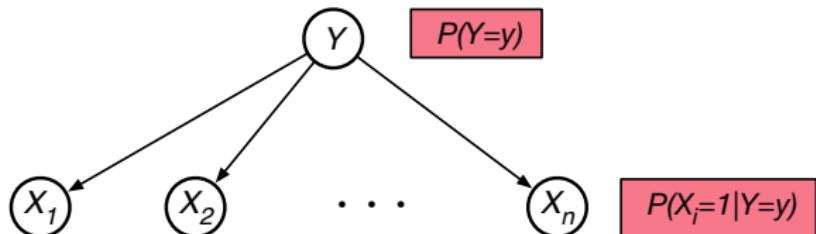
How to learn the CPTs from data?

- **Collect** a large corpus of documents.
- **Label** each document by a topic.
- **Estimate** the CPTs by maximizing the likelihood.

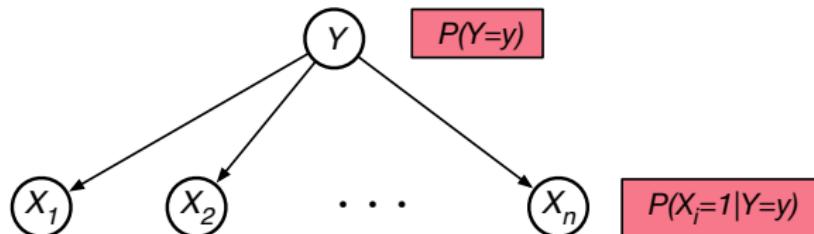
ML estimation





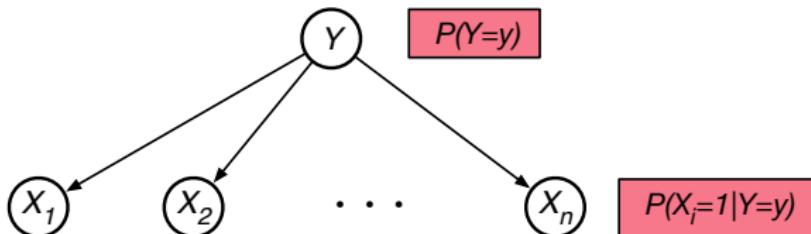


$P_{\text{ML}}(Y=y) = \text{fraction of documents with label } y \text{ in the corpus}$



$P_{\text{ML}}(Y=y) = \text{fraction of documents with label } y \text{ in the corpus}$

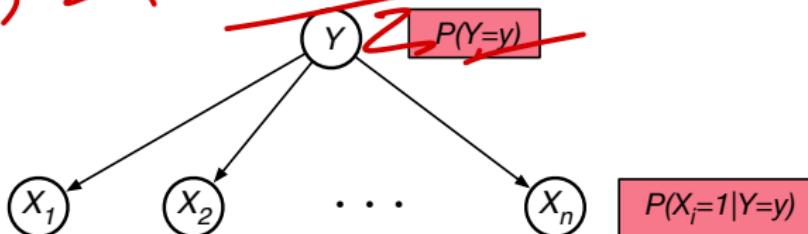
$P_{\text{ML}}(X_i=1|Y=y)$



$P_{\text{ML}}(Y=y)$ = fraction of documents with label y in the corpus

$P_{\text{ML}}(X_i=1|Y=y)$ = fraction of documents with label y that contain the i^{th} word in the vocabulary

$$P(Y|X) = P(X|Y) P(Y)$$



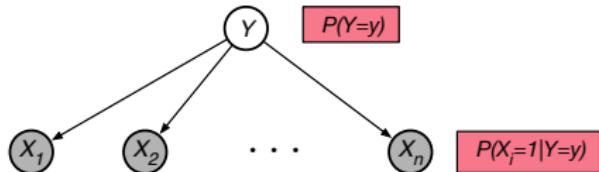
$P_{ML}(Y=y)$ = fraction of documents with label y in the corpus

$P_{ML}(X_i=1|Y=y)$ = fraction of documents with label y that contain the i^{th} word in the vocabulary

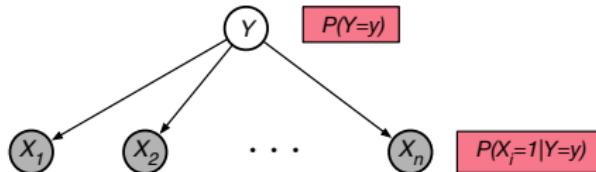
Once the model is learned, what is it good for?

predict $\downarrow x$

How to classify
an unlabeled
document?

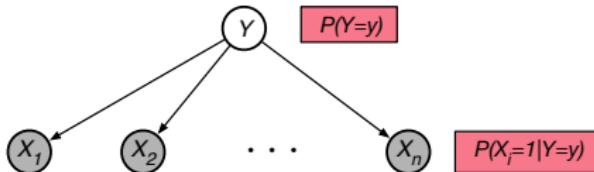


How to classify
an unlabeled
document?



$$P(Y=y|X_1, X_2, \dots, X_n)$$

How to classify
an unlabeled
document?

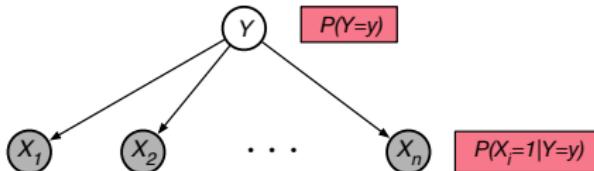


$$P(Y=y|X_1, X_2, \dots, X_n)$$

$$= \frac{P(X_1, X_2, \dots, X_n|Y=y) P(Y=y)}{P(X_1, X_2, \dots, X_n)}$$

Bayes rule

How to classify
an unlabeled
document?



$$P(Y=y|X_1, X_2, \dots, X_n)$$

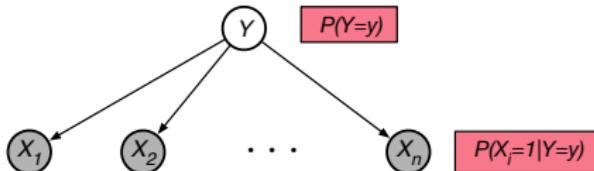
$$= \frac{P(X_1, X_2, \dots, X_n|Y=y) P(Y=y)}{P(X_1, X_2, \dots, X_n)}$$

Bayes rule

$$= \frac{P(Y=y) \prod_{i=1}^n P(X_i|Y=y)}{P(X_1, X_2, \dots, X_n)}$$

conditional independence

How to classify
an unlabeled
document?



$$P(Y=y|X_1, X_2, \dots, X_n)$$

$$= \frac{P(X_1, X_2, \dots, X_n|Y=y) P(Y=y)}{P(X_1, X_2, \dots, X_n)}$$

Bayes rule

$$= \frac{P(Y=y) \prod_{i=1}^n P(X_i|Y=y)}{P(X_1, X_2, \dots, X_n)}$$

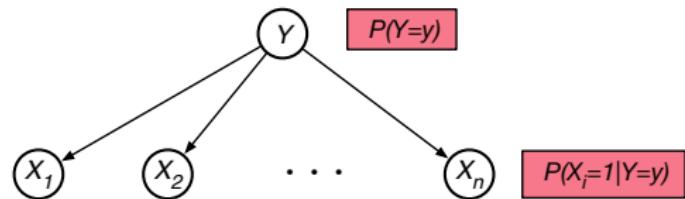
conditional independence

$$= \frac{P(Y=y) \prod_{i=1}^n P(X_i|Y=y)}{\sum_{y'} P(Y=y') \prod_{i=1}^n P(X_i|Y=y')}$$

normalization

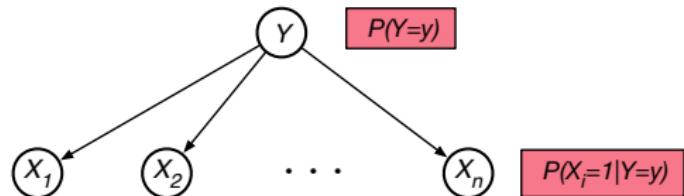
Strengths and weaknesses

Strengths and weaknesses



Strengths and weaknesses

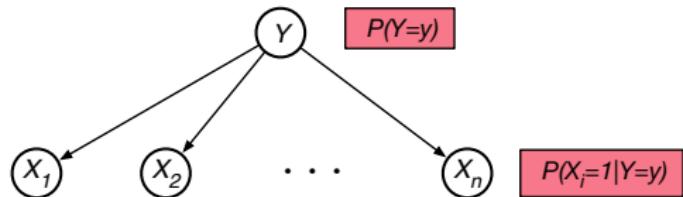
Strengths



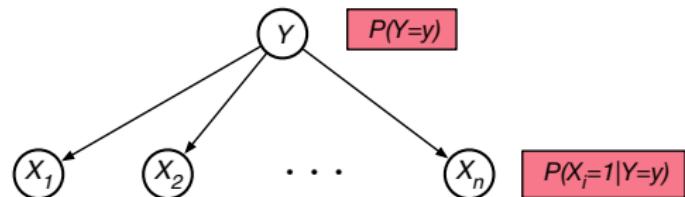
Strengths and weaknesses

Strengths

- Easy to learn from data.



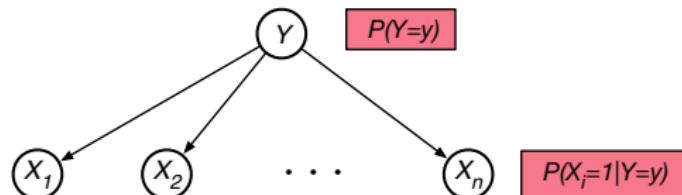
Strengths and weaknesses



Strengths

- Easy to learn from data.
- Easy to classify unlabeled documents.

Strengths and weaknesses

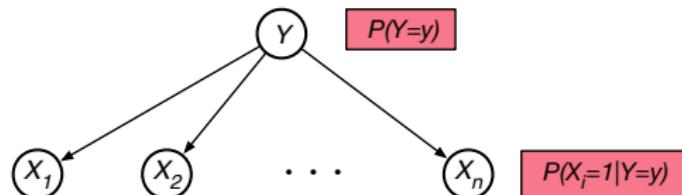


Strengths

- Easy to learn from data.
- Easy to classify unlabeled documents.

Weaknesses

Strengths and weaknesses



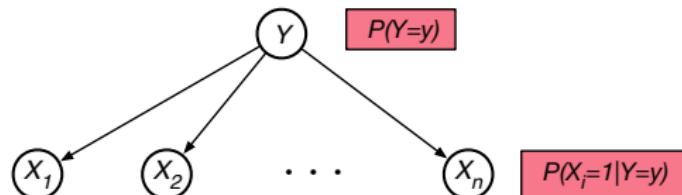
Strengths

- Easy to learn from data.
- Easy to classify unlabeled documents.

Weaknesses

- Naive Bayes assumption of conditional independence

Strengths and weaknesses



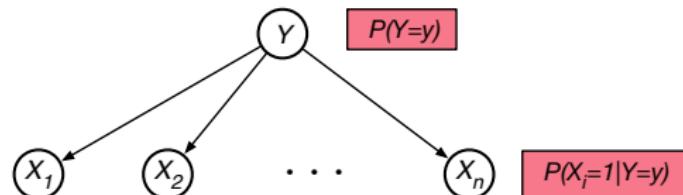
Strengths

- Easy to learn from data.
- Easy to classify unlabeled documents.

Weaknesses

- Naive Bayes assumption of conditional independence
- No information about word ordering

Strengths and weaknesses



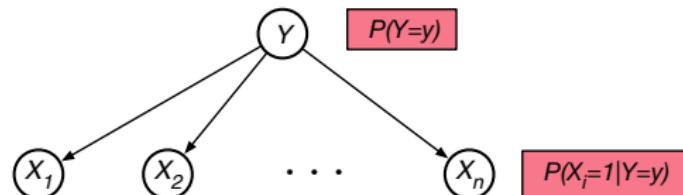
Strengths

- Easy to learn from data.
- Easy to classify unlabeled documents.

Weaknesses

- Naive Bayes assumption of conditional independence
- No information about word ordering
- Binarization of word counts

Strengths and weaknesses



Strengths

- Easy to learn from data.
- Easy to classify unlabeled documents.

Weaknesses

- Naive Bayes assumption of conditional independence
- No information about word ordering
- Binarization of word counts
- Etc ...

That's all folks!