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Review

Learning in BNs

Markov models

Naive Bayes models
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MCMC - Gibbs Sampling

- Initialization
Fix evidence nodes to observed values e, e’.
Initialize non-evidence nodes to random values.

1| Repeat N times|
Pick a non-evidence node X at random.
Use Bayes rule to compute P(X|By).
Resample x ~ P(X|Bx).
Take a snapshot of all the nodes in the BN.

- Estimate
Count the snapshots N(g,q") < N with Q=g and Q'=q'".

N(q,q")
N

P(Q=q,Q'=q'|E=¢,F'=¢') ~
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Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducibile
and aperiodic) Markov chain over the non-evidence nodes
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Under reasonable conditions...
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2. The stationary distribution of this Markov chain is equal to
the BN’s posterior distribution over its non-evidence
nodes.
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Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducibile
and aperiodic) Markov chain over the non-evidence nodes

of the BN.

2. The stationary distribution of this Markov chain is equal to
the BN’s posterior distribution over its non-evidence

nodes. Hwe fo Gakiomeiy RSt
3. Theoretical guarantees for[mixing time,)in practice we use
‘[§um n\time.
4. The estimates from MCMC converge in the limit:

/
||m N(Q7Q) N P(QZC],Q’ZCHEZ@,E’ZQ’)
N—oo N
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MCMC versus likelihood weighting (LW)
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MCMC versus likelihood weighting (LW)

- How they sample

P(X|pa(X))

samples non-evidence nodes from
P(X[Bx)

MCMC
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MCMC versus likelihood weighting (LW)

- How they sample

P(X|pa(X))

P(X[Bx)

samples non-evidence nodes from
MCMC

- Cost per sample

LW can read off P(X|pa(X)) from each CPT.
MCMC must compute P(X|Bx) before each sample.

- Convergence

L\W is slow for rare evidence in leaf nodes.
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MCMC versus likelihood weighting (LW)

- How they sample

P(X|pa(X))

MCMC P(X|Bx)

} samples non-evidence nodes from {
- Cost per sample

LW can read off P(X|pa(X)) from each CPT.
MCMC must compute P(X|Bx) before each sample.

- Convergence

L\W is slow for rare evidence in leaf nodes.
MCMC can be much faster in this situation.
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Learning in BNs

- Where do BNs come from?
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Learning in BNs
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Sometimes an expert can provide the DAG and CPTs.
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With sufficient data, we can estimate useful models.
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Learning in BNs

- Where do BNs come from?

Sometimes an expert can provide the DAG and CPTs.
But not always — especially not in very complex domains.

- What is the alternative?

With sufficient data, we can estimate useful models.
This is the central idea of machine learning.

- What are some applications?

Language modeling
Visual object recognition
Recommender systems
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Maximum likelihood (ML) estimation
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- Here'’s a simple idea:
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- Here'’s a simple idea:

Model data by the BN that assigns it the highest
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- Here'’s a simple idea:

Model data by the BN that assigns it the highest
probability.
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P(observed data | DAG & CPTs).
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Maximum likelihood (ML) estimation

- Here'’s a simple idea:
Model data by the BN that assigns it the highest
probability.
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Maximum likelihood (ML) estimation

- Here'’s a simple idea:

Model data by the BN that assigns it the highest
probability.
In other words, choose the DAG and CPTs to maximize

P(observed data | DAG & CPTs).

This probability is known as the likelihood.

- But is this too simple?

The data may be unrepresentative or too limited.
This is one failure mode of ML estimation.
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Learning with complete data and tabular CPTs
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Learning with complete data and tabular CPTs

ASSUMPTIONS
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Learning with complete data and tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.
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| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.

2. The data consists of T complete (or fully observed)
instantiations of all the nodes in the BN.
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Learning with complete data and tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.

2. The data consists of T complete (or fully observed)
instantiations of all the nodes in the BN.

3. CPTs enumerate P(X;=x|pa(X;) = ) as lookup tables;
each must be estimated for all values of x and .
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- Fixed DAG over discrete random variables

X e {1,2,3}
X, € {1,2,3,4}

@ @ X3 € {1,2,3,4,5}
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- Fixed DAG over discrete random variables

® ®

- Data set
example | x71 | X2 | X3
1 1 4 5
2 3 2 4
3 2 1 3
T 1 3 2

X'I € {17273}
X, € {1,2,3,4}
X3 € {1,2,3,4,5}

—n | daka poin

’r
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- Fixed DAG over discrete random variables

/ X1 € {1,2,3}
R /26{1 34}

X5 e {1,2.3,4,5)

- Data set /

example | x71 | X2 | X3 ) )
1 1] 4|5 Note that if T is
2 3124 sufficiently large,
3 2 [ 1]3
, some rows are
T T35 destined to repeat.
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- Fixed DAG over discrete random variables

X, € {1,2,3}
X, € {1,2,3,4}

@ @ X3 € {1,2,3,4,5}

- Data set
example | x71 | X2 | X3
1 1] 4|5 Note that if Tis
2 3124 sufficiently large,
3 213
some rows are
T R destined to repeat.
2
0 0 ("
We can also denote the data set as {(x1 X575 X3 )} .
t—1  47/239



- Fixed DAG over discrete random variables

® ®

- Data set

example

X

X2

X3

1

2

3

X, € {1,2,3}
X, € {1,2,3,4}
Xs € {1,2,3,4,5}

How to choose the

CPTs so that the BN
maximizes the probability
of this data set?
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
distributed (11D) from the joint distribution of the BN.
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
distributed (11D) from the joint distribution of the BN.

- Probability of I1ID data

P(data) =
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
stributed (11D) from the joint distribution of the BN.

- Probability of I1ID data

data HP(X1 = ,Xzfxgt),...,xm:xg»
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ML estimation

- 1ID assumption
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
stributed (11D) from the joint distribution of the BN.

- Probability of I1ID data

P(data) HP(X1 = ,Xzfxgt),...,xm:xg»

- Probability of t*" example

P(XW - ,xz_x;),...,xn:xﬁ))
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
stributed (11D) from the joint distribution of the BN.

- Probability of I1ID data

P(data) HP(X1 =x{ x,=xP .. szﬁ”)

- Probability of t*" example

P(XW - ,xz_x;),...,xn:xﬁ))

HP (=4 o=
i=1

X0, X :x&) product rule
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ML estimation

- 1ID assumption

The examples are assumed to be independent and identically
stributed (11D) from the joint distribution of the BN.

- Probability of I1ID data a ”
L‘H‘\“’w\ P(data) HP(X1 =x{ x,=xP, . X, = (0) T?Z)S

- Probability of t*" example

P(XW - ,xz_x;%...,xn:xﬁ))

HP <X,-:x() X1 = product rule

eatb\ = HP(X,—X ‘an, pa()) ’conditionalindependence‘
1)1 5%} 71 9 58 /239
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Computing the log-likelihood

L = logP(data)
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Computing the log-likelihood

L = logP(data)

= Iogl_[F’<X1 7X2 ey SP)
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Computing the log-likelihood
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= Iog;T[P(X1 7X2 Yo 9)
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Computing the log-likelihood

L = logP(data)

= Iog;T[P(X1 7X2 Yo 9)
~ g [TTT7 (49 )

t=1 =1
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Computing the log-likelihood

L = logP(data)

= Iog;T[P(X1 7X2 Yo 9)

— IogH H P (X,(t) ‘paft)) ’ product rule & Cl

t=1 =1
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Computing the log-likelihood

L

log P(data)

IogHP<X1t)7X§t Yo 9)

IogH H P (x,(t) ‘paft)) ’ product rule & Cl

t=1 =1

ZT: z”: log P (X,m ‘pa’(t))

t=1 =1
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Computing the log-likelihood

L

log P(data)

IogHP<X1t)7X§t Yo 9)

IogH H P (x,(t) ‘paft)) ’ product rule & Cl ‘

t=1 =1

T n
> logP (er ‘Pagt)) |log pq = log p + log q]

t=1 =1
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Computing the log-likelihood

L = logP(data)

= IogHP<X1t)7X§t,..., SP)

— IogH H P (X,(t) ‘paft)) ’ product rule & Cl ‘

t=1 =1

T n
_ ZZIogP<X,§t)‘pa’(t)) [log pg = log p + log q |

t=1 =1

= Zn: ZT: log P (le ‘pal(t)>

=1 t=1

sum over examples
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Computing the log-likelihood

L = logP(data)

= IogHP<X1t)7X§t,..., SP)

— IogH H P (X,(t) ‘paft)) ’ product rule & Cl ‘

t=1 =1

T n
_ ZZIogP<X,§t)‘pa’(t)) [log pg = log p + log q |

t=1 =1

n T
= > > logP (x,m ‘paft)> |sums can be reordered |

=1 t=1

sum over examples
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Counting co-occurrences

- Counts
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where X;=x and pa;=.
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- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

x
>
>
>

w

RPN N W=

N~ |W| o1

Wl W[N]
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

>
)

>
@w

count(X1,=1) = 3

Cowvl'()(‘ =)=

Wl W[N]
N~ |W| U1

(=) =N Nwef
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

x
>
>
>

w

count(X1=1) = 3
count(X;=2) = 2

RPN N W=

N~ |W| o1

Wl W[N]
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example
e X1 X | X3 count(X;=1) = 3
count(X;=2) = 2
count(X,=3) = 1

RPN N W=

N~ |W| o1

Wl W[N]
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example
e X1 X | X3 count(X;=1) = 3
count(X;=2) = 2
count(X,=3) = 1

count(X, =1,X1=2)

RPN N W=
Wl W[N]
N~ |W| o1
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

XX | X3 count(X1=1) = 3

(x) 145
I3 % count(X;=2) = 2
21113 count(X;=3) = 1
@ @ 2 1] 4 count(X,=1,X%=2) = 2

113 5

1 3 2
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example
XX | X3 count(X1=1) = 3
(x) 145
I3 % count(X;=2) = 2
21113 count(X;=3) = 1
@ @ 2 1] 4 count(X,=1,X%=2) = 2
113 5
113 5 count(X, =3,%1=1) = 2
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Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

XX | X3 count(X1=1) = 3

(x) 145
I3 % count(X;=2) = 2
21113 count(X;=3) = 1
@ @ 2 1] 4 count(X,=1,X%=2) = 2

1] 3 5
113 5 count(X, =3,%1=1) = 2
count(X3=5,X1=1) = 2

78 /239



Counting co-occurrences

- Counts

Let count(X;=x, pa;, = m) denote the number of examples
where Xj=x and pa;=.

- Example

XX | X3 count(X1=1) = 3

(x) 145
I3 % count(X;=2) = 2
21113 count(X;=3) = 1
@ @ 2 1] 4 count(X,=1,X%=2) = 2

1] 3 5
113 5 count(X, =3,%1=1) = 2
count(X3=5,X1=1) = 2

Note: these counts can be compiled in one pass through the data set.
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Computing the log-likelihood

Next: replace the unweighted sum over examples at each node
by a weighted sum over its values and those of its parents.
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Computing the log-likelihood

Next: replace the unweighted sum over examples at each node
by a weighted sum over its values and those of its parents.

£ = 3 o (4 [mf?)
j=1 t=1
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Computing the log-likelihood

Next: replace the unweighted sum over examples at each node
by a weighted sum over its values and those of its parents.

-
log P
1

£ = 30 e (o)
i=1 t=

n
= ZZZCOIIIIt(X,‘:X7pa,':7T) log P(X; =x|pa; =)
=1 x 7

T
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Computing the log-likelihood

Next: replace the unweighted sum over examples at each node

by a weighted sum over its values and those of its parents.
o+ & EX

noT 7
e = 3 a0t
2 oc
= ZZZcountX =X, pa; =) log P(Xj=X|pa;=m) o

— ’ B

[ These two expressions compute the exact same sum! ]
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Computing the log-likelihood

Next: replace the unweighted sum over examples at each node
by a weighted sum over its values and those of its parents.

R CTICUY
t=1

=1t

n
= ZZZCOUHt(X,‘:X,pa,':ﬂ') log P(X; =x|pa; =)
=1 x 7

[ These two expressions compute the exact same sum! ]

But the latter has a much more appealing form ...
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Interpreting the log-likelihood
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Interpreting the log-likelihood

constants of the data

ZZZ count(Xj=x,pa;=m) log P(Xi=x|pa;=m)

CPTs to optimize
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Interpreting the log-likelihood

constants of the data

ZZZ count(Xj=x,pa;=m) log P(Xi=x|pa;=m)

CPTs to optimize

- The log-likelihood for complete data is a triple sum over

I — thenodesinthe BN
x — thevalues of each node X;
m — thevalues « of the parents of X;
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Interpreting the log-likelihood

constants of the data

ZZZ count(Xj=x,pa;=m) log P(Xi=x|pa;=m)

CPTs to optimize

- The log-likelihood for complete data is a triple sum over

I — thenodesinthe BN
x — thevalues of each node X;
m — thevalues « of the parents of X;

- How to optimize?
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Interpreting the log-likelihood

constants of the data

ZZZ count(Xj=x,pa;=m) log P(Xi=x|pa;=m)

CPTs to optimize

- The log-likelihood for complete data is a triple sum over

I — thenodesinthe BN
x — thevalues of each node X;
m — thevalues « of the parents of X;

- How to optimize?

Intuitively, the larger the count(X;=x, pa; =),
the larger we should choose P(X;=x|pa;=m).
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Decomposing the log-likelihood
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Decomposing the log-likelihood

- Log-likelihood for BN
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Decomposing the log-likelihood

- Log-likelihood for BN

£= ZZZCOHM(X”:X>P3:’:W) log P(X;=X|paj=m)
i T X
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Decomposing the log-likelihood

- Log-likelihood for BN

£= ZZZCOHM(X”:X>P3:’:W) log P(X;=X|paj=m)
i T X

- Contribution from row = of it" node’s CPT
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Decomposing the log-likelihood

- Log-likelihood for BN

£= ZZZCOHM(X”:X>P3:’:W) log P(X;=X|paj=m)
i T X

- Contribution from row = of i’ node’s CPT
Li, = Zcount(X,-:X,pa,-:w) log P(Xj=X|pa;=m)

X

A
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Decomposing the log-likelihood

£ - Zzzcount(X,-:x,pai:ﬂ) log P(Xi=X|paj=m)
X

- =

- Contribution from row = of it" node’s CPT

Li, = Zcount(X,-:X,pa,-:w) log P(Xj=X|pa;=m)

L B

- Divide and conquer
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Decomposing the log-likelihood

- Log-likelihood for BN

£= ZZZCOHM(X”:X>P3:’:W) log P(X;=X|paj=m)
i T X

- Contribution from row = of it" node’s CPT

Li, = Zcount(X,-:X,pa,-:w) log P(Xj=X|pa;=m)

X
- Divide and conquer

The overall optimization over £ reduces to many simpler
and smaller optimizations over each Lj,.
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Decomposing the log-likelihood

- Log-likelihood for BN

£= ZZZCOHM(X”:X>P3:’:W) log P(X;=X|paj=m)
i T X

- Contribution from row = of it" node’s CPT

Li, = Zcount(X,-:X,pa,-:w) log P(Xj=X|pa;=m)

X
- Divide and conquer

The overall optimization over £ reduces to many simpler
and smaller optimizations over each Lj,.

This is a special property of ML estimation for complete data.
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ML Estimation

99 /239



ML Estimation

« Problem
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ML Estimation

« Problem

For each node X; in the BN,
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
subject to two constraints:
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
subject to two constraints:

1. Y, PXi=x|paj=m) =1 (normalized)

105 /239



ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
subject to two constraints:

1. >, P(Xi=x|paj=m)=1  (normalized)
2. P(Xi=X|paj=m) >0 (nonnegative)

/ N
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
subject to two constraints:

1. >, P(Xi=x|paj=m)=1  (normalized)
2. P(Xi=X|paj=m) >0 (nonnegative)

- Shorthand
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
subject to two constraints:

1. >, P(Xi=x|paj=m)=1  (normalized)
2. P(Xi=X|paj=m) >0 (nonnegative)

- Shorthand

Co = count(Xj=a,pa;=m)
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

Li. = Zcount(X;:X,pa,»:ﬂ) log P(X;=X|pa;=m)

X
subject to two constraints:

1. >, P(Xi=x|paj=m)=1  (normalized)
2. P(Xi=X|paj=m) >0 (nonnegative)

- Shorthand

Co = count(Xj=a,pa;=m)
Pa = PXi=alpa;=m)
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ML Estimation

« Problem

For each node X; in the BN, and for each row = of its CPT,
our goal Is to maximize

= Zcoun =x,pa; =) log P(X;=xX|pa;=m)
subject to two “constraint ,5( % \6') + ,‘ ( 1/‘37\
1. Z P( X\]m > (normaliz o
2. =X|pa;= (nonweqative) <

- Shorthand Q Z ?C'K lf»h LMLMQ

How to maximize

Co = count(Xj=a,pa;=m) O:> > o Calogp, such
Pa = PXi=alpa;=m) that > p, =1
and p,, > 0?
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Maximizing the likelihood
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Maximizing the likelihood

- Compute the normalized counts:
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Maximizing the likelihood

- Compute the normalized counts:

Define g, = EC;CB sothaty ga=1.
7 ‘
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Maximizing the likelihood

- Compute the normalized counts:

Define g, = EC;CB sothaty ga=1.

Note that g, is itself a distribution.
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- Compute the normalized counts:
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Define g, = s 5O that)  ga =1.
Note that g, is itself a distribution.

- All these problems have the same solution:
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Maximizing the likelihood

- Compute the normalized counts:

Ca _
Define g, = s 5O that)  ga =1.
Note that g, is itself a distribution.

- All these problems have the same solution:

Maximize > Cylogp, suchthat 3  ps, =1 po>0.
\
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Maximizing the likelihood

- Compute the normalized counts:

Ca _
Define g, = s 5O that)  ga =1.
Note that g, is itself a distribution.

- All these problems have the same solution:

Maximize(.'—za C, log pa) suchthat > pa =1, pa > 0.
Minimize Y, C,log p% suchthat > pa =1 pa > 0.
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Maximizing the likelihood

- Compute the normalized counts:

Ca _
Define g, = s 5O that ) ga =1.
Note that g, is itself a distribution.

- All these problems have the same solution:

Maximize > Cqlogp, suchthat 3  ps. =1 po>0.
Minimize )", C, log p% suchthat > pa =1 pa > 0.

Minimize 3" C, log g— suchthat 3 pa =1, pa > 0.
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Maximizing the likelihood

- Compute the normalized counts:

Define g, = ZC;CB sothaty ga=1.

Note that g, is itself a distribution.

- All these problems have the same solution:
Maximize > Cylogp, suchthat 3  ps, =1 po>0.
Minimize ", C,log p% suchthat > pa =1 pa > 0.
Minimize 3" C, log pC;T suchthat > pa =1, pa >0.

Minimize 3" q.log = suchthat 37 pa =1, pa >0.
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Maximizing the likelihood

- Compute the normalized counts:

Ca _
Define g, = e sothat )’ go =1.
Note that g, is itself a distribution.

- All these problems have the same solution:
Maximize > Cqlogp, suchthat >  po =1 pa > 0.
Minimize " C,log Di suchthat Y pa =1 pa > 0.
Minimize " C, log g—“ suchthat Y pa=1pa >0.

Minimize > q.log =  suchthat >, pa=71,pa>0.

\_v_/

KL(q,p) <+ | KL distance
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Maximizing the likelihood

- Compute the normalized counts:
< >
Define g, = Z;Cﬂ sothat )’ go =1.

Note that g, is itself a distribution.

- All these problems have the same solution:
Maximize > Cqlogp, suchthat >  po =1 pa > 0.
Minimize " C,log pi suchthat Y pa =1 pa > 0.
Minimize " C, log g—“ suchthat Y pa=1pa >0.

Minimize > q.log =  suchthat >, pa=71,pa>0.

\_v_/

KL(q,p) + | KL distance

’Solution: Pa = qa‘
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ML solution from normalized counts
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)

- For nodes with parents:
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)

- For nodes with parents:

PuL(Xi=x|paj=m) =
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)

- For nodes with parents:

count(X; =X, pa; =)

Prr.(Xi=x|pa; =m) = count(pa; =)
=
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)

- For nodes with parents:

count(X; =X, pa; =)

Prr.(Xi=x|pa; =m) = count(pa; =)
=

- For root nodes:
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)

- For nodes with parents:

count(X; =X, pa; =)

Prr.(Xi=x|pa; =m) = count(pa; =)
=

- For root nodes:

Pun(Xi=x) =
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ML solution from normalized counts

count(X;=x, pa;=m)

ML =XIpa =) = S b=, pay =)

- For nodes with parents:

count(X; =X, pa; =)

Prr.(Xi=x|pa; =m) = count(pa; =)
=

- For root nodes:

count(X;=x)

PuL(Xj=x) = T
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ML Example

Observed data:

Y|Z
0|01
0|1]|0
0|11
0|10

X,YandZ 1100

are Boolean 1100

variables
0|11
1/0(0
0|11
0|01
0|11
1/0(0
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ML Example

Observed data:

2
X,Yand Z

are Boolean
variables

X

=<

rlO|O|O|RP|O|Pr|P|O|O|O|O

O|rP|O|P|O|P|O|O(R|[RP|RL|O

OI—\I—‘HOI—‘OOOI—\OH\

Q. Which of the following

C. P(x=11Y=1& Y I
D. péyre than one of
these

E. Alone of these
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ML Example

?C\L:\)
/\Observed data:
(_‘5‘\ “ [xTy]z : :
g Q. Not including comple-
olo|1
ST1To ments (eg. P(X=1) and
o1t P(X=0)), how many differ-
?Lg—,\\‘;, bl1]o ent parameters are there
X,YandzZ 1|o0]o0 to estimate?
are Boolean —_—
variables 1109 A3
011
T T B. 4
\)K 0|11 C.5
2% | BEk &>
o ! o[1]1
[ © 1100 E. More than7
C / 132/ 239



ML Example

A

Observed data: -2

X|Y|z

olo|1 . )
e Q. What is the ML esti-
NEE mate for P(Z=1|X=0, Y=0)?
oj1]0 -

X,YandZ 110|0 A 0O

are Boolean 1100

variables B. 1/6
o112
1/0]0 C.1/2
0|11 1
olo|1
o111 E. None of the above
1|00
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ML Example

X,Yand Z
are Boolean
variables

Observed data:

=<

N

Rr|lO|CO|O|RP|O|P|P|O|O|OC|O|X

O|rP|O|P|O|P|O|O(R|[RP|RL|O

O|lRPr|IP|IPIO|POC|IO(CO([RP|O|F

Q. Which parameter has

an

undefined ML esti-

mate?

A.

P(X=1)

P(Y=1[X=0)
P(Z=1IX=0, Y=0)
P(Z=1]X=1, Y=1)

!"".UO.UU

More than onegf
the above
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- Asymptotically correct:
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Properties of ML solution

- Asymptotically correct:

The more data you have, the better your estimates.
If P(x1,X2,...,Xn) > 0, then

lim Py (X1,X2, ..., Xn) = P(X1,X2, ..., Xn)
T—o0
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Properties of ML solution

- Asymptotically correct:

The more data you have, the better your estimates.
If P(x1,X2,...,Xn) > 0, then

lim Py (X1,X2, ..., Xn) = P(X1,X2, ..., Xn)
T—o0

- But problematic for sparse data:
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Properties of ML solution

- Asymptotically correct:

The more data you have, the better your estimates.
If P(x1,X2,...,Xn) > 0, then

lim Py (X1,X2, ..., Xn) = P(X1,X2, ..., Xn)
T—o0

- But problematic for sparse data:

count(X; =X, pa;=m)

Paan (X =x|paj =) = count(pa; =)
=
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Properties of ML solution

- Asymptotically correct:

The more data you have, the better your estimates.
If P(x1,X2,...,Xn) > 0, then

lim Py (X1,X2, ..., Xn) = P(X1,X2, ..., Xn)
T—o0

- But problematic for sparse data:

count(X;=x,pa; =7
PuL(Xj=X|paj=m) = (' =)

count(pa; =)

This is undefined when count(pa;=m) = 0.
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Properties of ML solution

- Asymptotically correct:

The more data you have, the better your estimates.
If P(x1,X2,...,Xn) > 0, then

lim Py (X1,X2, ..., Xn) = P(X1,X2, ..., Xn)
T—o0

- But problematic for sparse data:

count(X;=x,pa; =7
PuL(Xj=X|paj=m) = (' =)

count(pa; =)

This is undefined when count(pa;=m) = 0.
Otherwise it is zero when count(Xj=x, pa;=7) = 0.
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Markov models




Statistical language modeling
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Statistical language modeling

Let w, denote the ¢*" word in a sentence (or text).
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Statistical language modeling

Let w, denote the ¢*" word in a sentence (or text).
How to model P(wq, wa, ..., w)?
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Statistical language modeling

Let w, denote the ¢*" word in a sentence (or text).
How to model P(wq, wa, ..., w)?

L CHAPTERI

What can | help
you with?

automatic speech recognition machine translation

146/ 239



Context and expectations in language
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Context and expectations in language
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Context and expectations in language

“It's hard to wreck a nice beach”
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Context and expectations in language

e

“It's hard to wreck a nice beach”
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Context and expectations in language

e

“It's hard to wreck a nice beach”

“It's hard to recognize speech.”
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Simplifying assumptions
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Simplifying assumptions

1. Finite context
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Simplifying assumptions

1. Finite context

To predict the ¢ word, it is sufficient to consider a
finite number of words that precede it:
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Simplifying assumptions

1. Finite context

To predict the ¢ word, it is sufficient to consider a

finite number of words that precede it:
P(welwa, wy, ... wpq) = P(We| We_(n_1y,- -, We—1)

n—1 previous words
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Simplifying assumptions

1. Finite context
To predict the ¢ word, it is sufficient to consider a

finite number of words that precede it:
P(welwa, wy, ... wpq) = P(We| We_(n_1y,- -, We—1)

n—1 previous words

2. Position invariance
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Simplifying assumptions

1. Finite context

To predict the ¢ word, it is sufficient to consider a
finite number of words that precede it:
P(welwa, wy, ... wpq) = P(We| We_(n_1y,- -, We—1)

n—1 previous words

2. Position invariance

Predictions should not depend on where the context
occurs in the sentence or text:
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Simplifying assumptions

1. Finite context

To predict the ¢ word, it is sufficient to consider a
finite number of words that precede it:
P(welwa, wy, ... wpq) = P(We| We_(n_1y,- -, We—1)

n—1 previous words

2. Position invariance

Predictions should not depend on where the context
occurs in the sentence or text:

P(We=wW|wWy_(n_y, .-, We_1)

158 / 239



Simplifying assumptions

1. Finite context

To predict the ¢ word, it is sufficient to consider a
finite number of words that precede it:
P(welwa, wy, ... wpq) = P(We| We_(n_1y,- -, We—1)

n—1 previous words

2. Position invariance

Predictions should not depend on where the context
occurs in the sentence or text:

P(We=wW|wWy_(n_y, .-, We_1)

= P(Werg=W|We g (nory=We_(n-1y,- - Wsie-1=Wp_1)
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Markov models

P(wy, wa, ..., W)
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Markov models

P(wy, wa, ..., W)

= HP(W@|W1,W2,...,WZ_1) product rule
¢
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Markov models

P(wy, wa, ..., W)
T e
4
= ] PWelwe—(iry, - -, W) ’conditionalindependence

y4
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Markov models

P(wy, wa, ..., W)
T e
4
= ] PWelwe—(iry, - -, W) ’conditionalindependence

y4
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Markov models

] Models of different orders \

165/ 239



Markov models

] Models of different orders \

n="1
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] Models of different orders \

n="1 unigram
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] Models of different orders \

n="1 unigram

) (o) ()~ () &)
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Markov models

] Models of different orders \

n="1 unigram

) (o) ()~ () &)

n=2
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Markov models

] Models of different orders \

n="1 unigram

) (o) ()~ () &)

n=2 bigram
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Markov models

] Models of different orders \

n="1 unigram

) (o) ()~ () &)

n=2 bigram

()y—~(—() ~ (=)
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Markov models

] Models of different orders \

n="1 unigram

) (o) ()~ () &)

n=2 bigram

()y—~(—() ~ (=)

n=3
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Markov models

] Models of different orders \

n="1 unigram

) (o) ()~ () &)

n=2 bigram

()y—~(—() ~ (=)

n=3  trigram
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Markov models

] Models of different orders \

) (o) ()~ () &)
()y—~(—() ~ (=)

O, O

174 [ 239



Bigram models
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Bigram models

()=~ ()
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

uwvW ‘V'"

all et YY

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

Pur(We=w|w,_1=w) =
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

count(w — w’
Pur(We=w|w,_1=w) = ( )
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

count(w — w’)

Prac(We =W Wer=W) = oW = %)
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

count(w — w’) count(w — w')
Prac(We=wime =) = == )~
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Bigram models

Note that the same CPT
@—@—@ @_@ for P(we=w'|wy_1=w) is

used at each node (for
>1).

] How to learn?\

Collect a large corpus of text with a well-defined vocabulary.

Count how often word w is followed by the word w'.
Count how often word w is followed by any word.

Estimate from empirical frequencies:

PrL(We=w'|we_q=w) = count(w —»w') _ count(w — w')
MLAWe= (=== count(w — x) >, count(w — w”)
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Problems with ML estimates

1. No generalization to unseen n-grams:

189 /239



Problems with ML estimates

1. No generalization to unseen n-grams:

ML estimates assign zero probability to n-grams that
do not appear in the training corpus.
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1. No generalization to unseen n-grams:
ML estimates assign zero probability to n-grams that

do not appear in the training corpus.

2. The larger n, the worse the problem:
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Problems with ML estimates
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ML estimates assign zero probability to n-grams that
do not appear in the training corpus.
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n-gram counts become increasingly sparse as n increases.
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Problems with ML estimates

1. No generalization to unseen n-grams:

ML estimates assign zero probability to n-grams that
do not appear in the training corpus.

2. The larger n, the worse the problem:

n-gram counts become increasingly sparse as n increases.
Many possible (but improbable) n-grams are not observed.
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Problems with ML estimates

1. No generalization to unseen n-grams:

ML estimates assign zero probability to n-grams that
do not appear in the training corpus.

2. The larger n, the worse the problem:

n-gram counts become increasingly sparse as n increases.
Many possible (but improbable) n-grams are not observed.

You will explore this problem further in HW 4.
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Naive Bayes models




Document classification
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Document classification

sports
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Document classification
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- Setup
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Document classification
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- Setup

Each document can be labeled by one of m topics.
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Each document can be labeled by one of m topics.
Each document consists of words from a finite vocabulary.

200 /239



Document classification

- Setup

Each document can be labeled by one of m topics.
Each document consists of words from a finite vocabulary.

- Random variables
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Document classification

- Setup

Each document can be labeled by one of m topics.
Each document consists of words from a finite vocabulary.

- Random variables

Let Y € {1,2,...,m} denote the label.

202 /239



Document classification

- Setup

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.
- Random variables

Let Y € {1,2,...,m} denote the label.
Let X; € {0, 1} denote whether the i*" word appears.
F—
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Document classification

sports

- Setup

Each document can be labeled by one of m topics.

Each document consists of words from a finite vocabulary.
- Random variables

Let Y € {1,2,...,m} denote the label.
Let X; € {0, 1} denote whether the i*" word appears.

This representation maps
each document to a sparse
binary vector of fixed length.

— [01100...010]
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Belief network
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Belief network
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Belief network

& @

This DAG makes a fairly drastic assumption of conditional
independence:

n

PO, ..., XalY) = T PCXiIY)
=1
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Belief network

& &

This DAG makes a fairly drastic assumption of conditional
independence:

n

PO, ..., XalY) = T PCXiIY)
=1

For this reason it is called a Naive Bayes model.
=
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Naive Bayes model
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Naive Bayes model

© [
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Naive Bayes model

® © [

Suppose this DAG is given, but the CPTs are not specified.
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Naive Bayes model

® © [

Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?
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Naive Bayes model

® © [

Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

- Collect a large corpus of documents.
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Naive Bayes model

® © [

Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

%2‘}‘
Y
- Collect a large corpus of documents./'7 9‘,_‘72 ,{-{;\A\%
- Label each document by a topic. \?9‘
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Naive Bayes model

® © [

Suppose this DAG is given, but the CPTs are not specified.
How to learn the CPTs from data?

- Collect a large corpus of documents.
- Label each document by a topic.

- Estimate the CPTs by maximizing the likelihood.
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ML estimation
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ML estimation
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ML estimation
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ML estimation

& &

Pun(Y=y) = fraction of documents with
label y in the corpus
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ML estimation

& &

Pun(Y=y) = fraction of documents with
label y in the corpus

Pur(Xi=1Y=y)
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ML estimation

Pun(Y=Y) fraction of documents with
label y in the corpus
Py (Xj=1]Y=y) = fraction of documents with

label y that contain the jth
word in the vocabulary
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ML estimation

PONY) FO3
POV =

& & - © EEE

Pun(Y=y) = fraction of documents with
label y in the corpus

Py (Xj=1]Y=y) = fraction of documents with
label y that contain the jth
word in the vocabulary

’ Once the model is learned, what is it good for?

prestic~ \ Ky
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Inference

How to classify
an unlabeled
document? ® ® - ®
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Inference

How to classify
an unlabeled
document? ® ® - ®

P(Y=y|X7,X2,...,Xn)
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Inference

How to classify
an unlabeled
document? ® ® - ®

P(Y=y|X1, X2, ..., Xn)

P(X1, Xa, ... Xn|Y=Y) P(Y=Y)
B l
PO, X, - Xn)
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Inference
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Inference

How to classify
an unlabeled
document? ® ® - ®

P(Y:y‘X'MXZa o 7Xﬂ)

P(X1, Xa, ... Xn|Y=Y) P(Y=Y)
B L
PO, X, - Xn)

— (YP(y)<)1,1_)[<2,._.(,XXnY) Y) ’conditionalindependence‘
P(Y=y) [T, P(XilY=Y)
Dy (Y—V)H_\ P(XilY=y')

] normalization \
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Strengths and weaknesses

Strengths @ @

- Easy to learn from data.

® [Fe]

- Easy to classify unlabeled documents.

Weaknesses

- Naive Bayes assumption of conditional independence
- No information about word ordering

- Binarization of word counts

- Etc ...
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That's all folks!
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