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Review

Conditional probability tables

d-separation and examples
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Review



Alarm example

P(B=1) = 0.001 P(E=1) = 0.002

~0
-

L.
B [ E | P(A=1]B,E)
00 0.001
Qc o 1]0 0.94
01 0.29
11 0.95
o
A [ P(U=1]A) A | P(M=1]A)
0 0.05 0 0.01
1 0.9 1 0.7
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Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:
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Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:

1. Nodes represent random variables.
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Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:
1. Nodes represent random variables.

2. Edges represent (direct) dependencies.
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Belief networks

A belief network (BN) is a directed acyclic graph (DAG) in which:
1. Nodes represent random variables.
2. Edges represent (direct) dependencies.

3. Conditional probability tables (CPTs) describe how each
node depends on its parents.

| BN = DAG + CPTs |
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:

.D(X,'|X17 . ;X[71) = P(X,'|pa(X,'))

—_—
where pa(X;) C {Xi,...,X;_1} denotes the parents of node X;.
.—:_. ———
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:

P(XilX1, ..., Xizq) = P(Xi|pa(Xi))
where pa(X;) C {Xi,...,Xj_1} denotes the parents of node X;.

In words: Each variable is conditionally independent of its
non-descendants given it's parents.
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- Missing edges encode assumptions of independence:

P(XilX1, ..., Xizq) = P(Xi|pa(Xi))
where pa(X;) C {Xi,...,Xj_1} denotes the parents of node X;.

In words: Each variable is conditionally independent of its
non-descendants given it's parents.

- Alarm example:
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:

P(XGXa, .., Xizq) = P(Xilpa(X;))
where pa(X;) C {Xi,...,Xj_1} denotes the parents of node X;.

In words: Each variable is conditionally independent of its
non-descendants given it's parents.

- Alarm example: ?Lg,E) A/j;M)
¥ (D& = ?(8)-P(E)
el PalBE)-FTlA)

A
(())@ @(()) F( Ml \
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:

P(XilX1, ..., Xizq) = P(Xi|pa(Xi))
where pa(X;) C {Xi,...,Xj_1} denotes the parents of node X;.

In words: Each variable is conditionally independent of its
non-descendants given it's parents.

- Alarm example:

PUJIA) = P(JIA,B,E)

@ () P(MIA) = P(MIA,B,E.))
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Marginal and conditional independence in DAGs

- Missing edges encode assumptions of independence:

P(XGXa, .., Xizq) = P(Xilpa(X;))
where pa(X;) C {Xi,...,Xj_1} denotes the parents of node X;.

In words: Each variable is conditionally independent of its
non-descendants given it's parents.

- Alarm example:

PUJIA) = P(JIA,B,E)

® o P(MIA) = P(MA,B,E,J)
These are true no matter
(())@ @(()) what CPTs are attached

to the nodes in the DAG.
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Conditional probability tables




Representing CPTs

PLHED ---
PLI X %)



Representing CPTs

q )5

- How to represent P(Y|X1, X, ..., X)?
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Representing CPTs

q )5

- How to represent P(Y|X1, X, ..., X)?

- Simplest case:
Suppose X; € {0,1}, Y € {0,1} are binary random
variables.

How to represent P(Y=1[X1,Xa, ..., Xg)?
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How to represent P(Y=1|X1,Xa,...,Xg)?

€ -

_\

Zk

Some possibilities:
1. Tabular&—
2. Logical / Deterministic
3. Noisy-OR

4. Sigmoid
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1. Tabular CPT

X1 | Xo Xe | P(Y =11X1, Xa, ..., X¢)
0o 0 0.1

1]o0 0 06

01 0 03

11 1 0.2
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1. Tabular CPT

X1 | Xo Xe | P(Y=1]X1, X2, - -, Xe)
0o 0 0.1
1]o0 0 06
01 0 03
11| |1 0.2

A lookup table can exhaustively enumerate a conditional
probability for every configuration of parents.
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1. Tabular CPT

X1 | Xo Xe | P(Y=1]X1, X2, - -, Xe)
0o 0 0.1
1]o0 0 06
01 0 03
11| |1 0.2

A lookup table can exhaustively enumerate a conditional
probability for every configuration of parents.

Pro Able to model arbitrarily complicated dependence.
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1. Tabular CPT

X1 | Xo Xe | P(Y=1]X1, X2, - -, Xe)
0o 0 0.1
1]o0 0 06
01 0 03
11| |1 0.2

A lookup table can exhaustively enumerate a conditional
probability for every configuration of parents.

Pro Able to model arbitrarily complicated dependence.

Con A table with 2% rows is too unwieldy for large k.
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.

kR
P(Y=1|X1,X2,. .., Xg) = HX,- -
=1
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.

kR
POY=1X. X, ... %) = []X
=1
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.

kR
POY=1X. X, ... %) = []X

=1

kR

P(Y=0[X:, X, ... Xe) = JJ(1-X)

=1
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.

kR
POY=1X. X, ... %) = []X

=1

kR

P(Y=0[X:, X, ... Xe) = JJ(1-X)

=1

Pro Compact representation for large k.
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2. Logical / Deterministic CPT

CPTs can also mimic the behavior of logical circuits.

kR
POY=1X. X, ... %) = []X

=1

kR

P(Y=0[X:, X, ... Xe) = JJ(1-X)

i=1
Pro Compact representation for large k.

Con No model of uncertainty.
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3. Noisy-OR CPT
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3. Noisy-OR CPT

Use k numbers p; € [0, 1] to parameterize all 2¥ entries in the CPT:

33 /127



3. Noisy-OR CPT

Use k numbers p; € [0, 1] to parameterize all 2¥ entries in the CPT:

fe

P(Y=0X, X, ..., Xk) = T—P» Q K}
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3. Noisy-OR CPT

l - - YP '?)( }M>
Use k numbers p; € [0, 1] to parameterize all 2% entries in the CPT: __ o
R

P(Y=0[X;, X2, ..., X)) = JJO-p)k ><,- - D

i=1

-

P(Y =X, X2, . . ., Xp) = 1 HT—p, 7 al
- 3 P’SMI*Pﬂ/

k/% Y w o



3. Noisy-OR CPT

Use k numbers p; € [0, 1] to parameterize all 2¥ entries in the CPT:

3

[T =p)"

i=1

P(Y=0[X1,X2,...,Xg)

R

1— [0 —=p)*

=1

P(Y=1[X1, X2, ..., Xk)

’ But why is this called Noisy—OR?‘
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Noisy-OR CPT (con’t)

2] Pt
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Noisy-OR CPT (con’t)
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Noisy-OR CPT (con’t)

- When all parents are equal to zero:
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Noisy-OR CPT (con’t)

- When all parents are equal to zero:
P(Y=1X,=0,X,=0,...,X,=0)
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Noisy-OR CPT (con’t)

- When all parents are equal to zero;

P(Y=1X=0,%=0,...,X=0) = 1-][(1-p))°

i=1
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .

P(Y=1X=0,X=0,....X=0) = 1-[J(1-p)® = 1-]J(")

i=1
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .

P(Y=1X=0,%=0,...,X=0) = 1-][(1-p)° = 1-]J() = 0
i=1

i=1
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .

P(Y=1X=0,%=0,...,X=0) = 1-][(1-p)° = 1-]J() = 0
i=1

i=1

- When exactly one parent X, is equal to one:
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .

P(Y=1X=0,%=0,...,X=0) = 1-][(1-p)° = 1-]J() = 0
i=1

i=1

- When exactly one parent X, is equal to one:

P(Y=1X=0,...,X_1=0,X=1,X1=0,...,X,=0)
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .

P(Y=1X=0,%=0,...,X=0) = 1-][(1-p)° = 1-]J() = 0
i=1

i=1

- When exactly one parent X, is equal to one:
P(Y=1]%=0,...,X_1=0,X=1,X7=0,...,X,=0)
= 1=0=p)" (1 =pi)(0 = p)' (1= pjya)" - (1= pr)’
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; )
P(Y=1X=0,%=0,...,X=0) = 1-][(1-p)° = 1-]J() = 0
i=1

i=1

- When exactly one parent X, is equal to one:

POY=1X=0,... . X_1=0,%~1,X.1=0,...,X.,=0)
= 1=(1=p)° - (1=pj=)°(1—p)' (V= pjs1)? - (1= pr)°
= 1-0-p)
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Noisy-OR CPT (con’t)

- When all parents are equal to zero; .
P(Y=1X=0,%=0,...,X=0) = 1-][(1-p)° = 1-]J() = 0
i=1

i=1

- When exactly one parent X, is equal to one:

POY=1X=0,... . X_1=0,%~1,X.1=0,...,X.,=0)
= 1=(1=p)° - (1=pj=)°(1—p)' (V= pjs1)? - (1= pr)°
= 1-0-p)
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Noisy-OR CPT (con’t)
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Noisy-OR CPT (con’t)

- Modeling uncertainty
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Noisy-OR CPT (con’t)

- Modeling uncertainty
Intuitively, p; € [0,1] is the probability that X;=1 by itself
triggers Y=1.
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Noisy-OR CPT (con’t)
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triggers Y=1.

- Logical OR as special case
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Noisy-OR CPT (con’t)

- Modeling uncertainty
Intuitively, p; € [0,1] is the probability that X;=1 by itself
triggers Y=1.

- Logical OR as special case
We recover a logical OR gate by taking the limit p;—1 for
all parents i =1,2,...,k.
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Noisy-OR CPT (con’t)

- Modeling uncertainty
Intuitively, p; € [0,1] is the probability that X;=1 by itself
triggers Y=1.

- Logical OR as special case
We recover a logical OR gate by taking the limit p;—1 for
all parents i =1,2,...,k.

- Canonical application
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Noisy-OR CPT (con’t)

- Modeling uncertainty
Intuitively, p; € [0,1] is the probability that X;=1 by itself
triggers Y=1.

- Logical OR as special case
We recover a logical OR gate by taking the limit p;—1 for
all parents i =1,2,...,k.

- Canonical application
The parents {X,A}f?:1 are diseases, and the child Y is a symptom.

The more diseases, the more likely is the symptom. 55 /127



4, Sigmoid CPT

Use k real numbers 6; € % to parameterize all 2% entries in the CPT:
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4, Sigmoid CPT

Use k real numbers 6; € % to parameterize all 2% entries in the CPT:

kR
P(Y=1|X1,X2,..., %) = & <Ze,x,->
=%

7
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4, Sigmoid CPT

Use k real numbers 6; € % to parameterize all 2% entries in the CPT:
k
P(Y=1|X1,X2,..., %) = & <Ze,x,->
i=1

The function on the right hand side is called the sigmoid function:
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4. Sigmoid CPT (con't)

Other uses of sigmoid functions:
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4. Sigmoid CPT (con't)

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression
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4. Sigmoid CPT (con't)

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:
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4. Sigmoid CPT (con't)

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

- If 0; > 0, then X;=1 favors Y =1.

62 /127



4. Sigmoid CPT (con't)

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

- If 0; > 0, then X;=1 favors Y =1.
- If 6; < 0, then X;=1 inhibits Y=1.
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4. Sigmoid CPT (con't)

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

- If 0; > 0, then X;=1 favors Y =1.
- If 6; < 0, then X;=1 inhibits Y=1.
- These effects can mix in a sigmoid CPT (unlike noisy-OR).
64 /127



d-separation and examples




Conditional independence

- What we've already seen
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Conditional independence

- What we've already seen

A node X; is conditionally independent of its non-parent
ancestors given its parents:

P(X;‘X],XQ, . ,X,'_1) = P(X,|pa(X,))
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Conditional independence

- What we've already seen

A node X; is conditionally independent of its non-parent
ancestors given its parents:

P(X;‘X],XQ, . ,X,'_1) = P(X,|pa(X,))

- What we can ask more generally

Let X, Y, and £ refer to disjoint sets of nodes in a BN.
When is X conditionally independent of Y given £?
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Conditional independence

- What we've already seen

A node X; is conditionally independent of its non-parent
ancestors given its parents:

P(X;‘X],XQ, . ,X,'_1) = P(X,|pa(X,))

- What we can ask more generally X \\\ j) ) E

Let X, Y, and F refer to disjoint sets of nodes in a BN. J,
When is X conditionally independent of Y given £?

PXIE,Y) = P(XE)
When is P(Y|E, X) P(Y|E) ?
P(X,Y[E) = P(X|E) P(Y]E)

69 /127



Conditional independence

- What we've already seen

A node X; is conditionally independent of its non-parent
ancestors given its parents:

P(X;‘X],XQ, . ,X,'_1) = P(X,|pa(X,))

- What we can ask more generally

Let X, ¥, and £ refer to disjoint sets of nodes in a BN.
When is X conditionally independent of Y given £?

PXIE,Y) = P(XE)
When is P(Y|E, X) P(Y|E) ?
P(X,Y[E) = P(X|E) P(Y]E)

- Above is special case 5(‘1 M_j \ %Qﬁ)

X=X}, E=pall) Y ={X ... X1} —pa(X;)
—— ——— - 7

70 /127



Base Cases
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d-separation in DAGs

d-separation = direction-dependent separation
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d-separation in DAGs

d-separation = direction-dependent separation

- Motivation

How is conditional independence in a BN encoded by the
structure of its DAG?
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d-separation in DAGs

d-separation = direction-dependent separation

- Motivation

How is conditional independence in a BN encoded by the
structure of its DAG?

- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.
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d-separation in DAGs

d-separation = direction-dependent separation

- Motivation

How is conditional independence in a BN encoded by the
structure of its DAG?

- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

’ What counts as a path, and when is it blocked?
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Paths in DAGs

- Definition

A path is any sequence of nodes connected by edges
(regardless of their directionalities); it is also assumed that no
nodes repeat.
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Paths in DAGs

- Definition

A path is any sequence of nodes connected by edges
(regardless of their directionalities); it is also assumed that no
nodes repeat.

- Examples

() (2)
()
(&) (]
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Paths in DAGs

- Definition

A path is any sequence of nodes connected by edges
(regardless of their directionalities); it is also assumed that no
nodes repeat.

- Examples
Two ? paths from A to D:

MA=-C—>B—=D

2Q)A—=C—F+«D
=
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Blocked paths

- Definition

A path 7 is blocked by a set of nodes E if there exists a

- ee—— >
node Z € « for which one of the three following conditions
hold.
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Blocked paths

- Definition

A path 7 is blocked by a set of nodes F if there exists a
node Z € « for which one of the three following conditions
hold.

O—@—0O
O——=~@——0

(1) Ze E edges align
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Blocked paths

- Definition

A path 7 is blocked by a set of nodes F if there exists a
node Z € « for which one of the three following conditions
hold.

edges align

(2) Ze E O~ @ —O edges diverge
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Blocked paths

- Definition

A path 7 is blocked by a set of nodes F if there exists a
node Z € « for which one of the three following conditions

hold.

(1) ZeE O ‘® ‘O edges align
O—@——-0O

(2 ZeE QA

O ‘O edges diverge
(A

(8) Z¢€E O ~(2)= O edges converge
descendants(Z) N E = {) ({%
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Intuition
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Intuition

X E Y

oO—0O0O—6—_CO—=~0

@ ), & U o

o—O /ﬁ\ O—@
O O
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Intuition

X E Y

O O 2 O Q@ 4i€ E.IS an mtervemrjg

event in a causal chain

) @ ~

@ ), & U o
) o )

O ), Z ), o

*

O

O
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

Z1 € Eis an intervening

event in a causal chain

7, € Eisa common
explanation or cause

- Intuition

X E

® ) @ ~
U J W

O ) @ ~
U & 1\

® ) o )
U U

*

O

O

© O O=
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Intuition

X E Y

O O @ O . Zy € Eis an intervening
event in a causal chain

@ U & U @ 7, crisacommon
explanation or cause

M () ) .
o—oO /\ Oo—=0 Z3 & E,desc(Zz)NE=0s
O O an unobserved common effect
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.
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- Theorem
P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Proof (not given)
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Proof (not given)

The proof of the theorem is non-trivial.
You are not responsible for its proof.

92 /127



- Theorem
P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Proof (not given)
The proof of the theorem is non-trivial.

You are not responsible for its proof.

- How useful is the theorem?
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- Theorem

P(X,Y|E) = P(X|E) P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

- Proof (not given)

The proof of the theorem is non-trivial.
You are not responsible for its proof.

- How useful is the theorem? Very!

There are efficient algorithms to test d-separation in large BNs.
You should become skilled at these tests in simple BNs.
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ

(()) (())

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

(1) ZeE

descendants(Z) 1 £ = 0
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ

1. P(B|A, M) < P(B|A) o
X = §8% )
v = Mg (()) O
[ =%

-

3) Z¢E —(2)— edges converge
descendants(Z) N E = 0 O
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ

1. P(B|A, M) < P(B|A)

The evidence is {A}.

(()) (())

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

descendants(Z) 1 £ = 0

(1) ZeE
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ
1. P(B|A, M) < P(B|A) \\Q- o

The evidence is {A}.

There is one path B — A — M. (()) \ (())

Oo—@—0 .
_7 ) ZekE O edges align

@ zete  O—@——(O  edgesdiverge

@) Z¢E O?ﬁo—() edges converge
O

descendants(Z) 1 £ = 0

98 /127



Alarm example

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.

There is one path B — A — M. (()) (())

Node A satisfies condition (1).

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

descendants(Z) 1 £ = 0

(1) ZeE
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.
There is one path B — A — M. (()) (())
Node A satisfies condition (1).
The statement is true.

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

descendants(Z) 1 £ = 0

(1) ZeE
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}. b

There is one path B — A — M. (()) (())
Node A satisfies condition (1). J L
The statement is true.

edges align
Oo—e—oO

2. P(J, MIA) £ P(J|A) P(M|A) 0265 O @O soomece
@ z¢E O?ﬁ’—() edges converge

(1) ZeE

descendants(Z) 1 £ = 0
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.
There is one path B — A — M. (()) (())
Node A satisfies condition (1).
The statement is true.

Oo—@—0

(1) zekE O 2 ~ edges align
2. P(J,MJA) < P(J|A) P(M]|A) @zt O @0 e
. . @ z¢E O—' '—O edges converge
The evidence is {A}. s C{Qo
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.

There is one path B — A — M. (()) (())

Node A satisfies condition (1).
The statement is true.

Oo—@—0

(1) zekE O 2 ~ edges align
2. P(J,MJA) < P(J|A) P(M]|A) @zt O @0 e
. . @ z¢E O—' '—O edges converge
The evidence is {A}. s C{Qo

There is one path J < A — M.
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.
There is one path B — A — M. (()) (())
Node A satisfies condition (1).
The statement is true.

(1) zekE @—O edges align
Oo—e—o0
2. P(J,MJA) < P(J|A) P(M]|A) @zt O @0 e
. . @ z¢E O—' '—O edges converge
The evidence is {A}. s C{Qo

There is one path J < A — M.
Node A satisfies condition (2).
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Alarm example

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
1. P(B|A, M) < P(B|A) 20,

The evidence is {A}.

There is one path B — A — M. (()) (())

Node A satisfies condition (1).
The statement is true.

(1) zekE @—O edges align
Oo—e—o0
2. P(J,MJA) < P(J|A) P(M]|A) @zt O @0 e
. . @ z¢E O—' '—O edges converge
The evidence is {A}. s C{Qo

There is one path J < A — M.
Node A satisfies condition (2).

The statement is true.
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Alarm example (con't)

[ A. TRUE or B. FALSE?

(())

Oo—@—0
Oo—e—oO

@ zee O—@—0O

©z¢e O—@—O
descendants(Z) N E = 0 O

(1) ZeE

edges align

edges diverge

edges converge
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ u ﬁ
3. P(B) = P(BIE) 20,

(()) (())

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge

@) Z¢E O?ﬁo—() edges converge
O

(1) ZeE

descendants(Z) 1 £ = 0
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ

3. P(B) £ P(B|E)

The evidence is {}.

(()) (())

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

(1) ZeE

descendants(Z) 1 £ = 0
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ

3. P(B) £ P(B|E)

The evidence is {}.

There is one path B — A «+ E. (()) (())

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

descendants(Z) 1 £ = 0

(1) ZeE
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] R0 A,

m

3. P(B) £ P(B|E) ® z“"“#"
The evidence is {}.
)) «»

There is one path B — A < E.
Node A satisfies condition (3).

Oo—@—0
Oo—e—oO

ZcE O—@—0O edges diverge
3) Z¢E O?ﬁo—() edges converge

edges align
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ o ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.
There is one path B — A «+ E. (()) (())
Node A satisfies condition (3).
The statement is true.

H edges align
Oo—e—oO

@ zete  O—@——(O  edgesdiverge
@) Z¢E O?ﬁo—() edges converge

(1) ZeE

descendants(Z) 1 £ = 0

/127



Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.
There is one path B — A «+ E. (()) (())
Node A satisfies condition (3).
The statement is true.

H edges align
Oo—e—oO

4. P(B|M) i P(B|M, E) @266 @)  osgosdvare
@ z¢E O?ﬁ’—() edges converge

(1) ZeE

descendants(Z) 1 £ = 0
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.
There is one path B — A «+ E. (()) (())
Node A satisfies condition (3).
The statement is true.

Oo—@—0

(1) zekE O 2 ~ edges align
4. P(BIM) £ P(BIM, E) @268 O @O womawee
. . @ z¢E O—' '—O edges converge
The evidence is {M}. s C{Qo
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.

There is one path B — A «+ E. (()) (())

Node A satisfies condition (3).
The statement is true.

Oo—@—0

(1) zekE O 2 ~ edges align
4. P(BIM) £ P(BIM, E) @268 O @O womawee
. . @ z¢E O—' '—O edges converge
The evidence is {M}. s C{Qo

There is one path B — A < E.
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.
There is one path B — A «+ E. (()) (())
Node A satisfies condition (3).
The statement is true.

(1) zekE @—O edges align
Oo—e—0
4. P(BIM) £ P(BIM, E) @268 O @O womawee
. . @ z¢E O—' '—O edges converge
The evidence is {M}. s C{Qo

There is one path B — A < E.
Note that M € desc(A).
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Alarm example (con't)

[ A. TRUE or B. FALSE? ] ﬁ G ﬁ
3. P(B) = P(BIE) 20,

The evidence is {}.

There is one path B — A «+ E. (()) (())

Node A satisfies condition (3).
The statement is true.

(1) zekE @—O edges align
Oo—e—0
4. P(BIM) £ P(BIM, E) @268 O @O womawee
. . @ z¢E O—' '—O edges converge
The evidence is {M}. s C{Qo

There is one path B — A < E.
Note that M € desc(A).

The statement is false.
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Loopy example

A. TRUE or B. FALSE? a
N
(s —1®

o—e——o0

(@ zekE O—@—0O edges diverge

@) z¢E O?.»/®\'—O edges converge
O

) ZeE edges align

descendants(Z) N £ = 0
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Loopy example

[ A. TRUE or B. FALSE? ] e
5. P(B|D, E) < P(B|D) :
O—®
o—@—0O
Oo———0O

(@ zekE O—@—0O edges diverge

@) z¢E O?.-/®\.—O edges converge
O

) ZeE edges align

descendants(Z) N £ = 0
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Loopy example

[ A. TRUE or B. FALSE? ] e
5. P(B|D, E) < P(B|D) ° :

The evidence is {D}.

Oo—@—0
Oo—@—=0

(@ zekE O—@—0O edges diverge

@) z¢E O?.-/®\.—O edges converge
O

) ZeE edges align

descendants(Z) N £ = 0
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Loopy example

[ A. TRUE or B. FALSE? ]

5. P(B|D, E) < P(B|D)

The evidence is {D}.
There are two paths from B to E.

o—e——o0

@z O—@—O

®z¢e O—@—O
descendants(Z) N E =0 O

(1) ZzeE

edges align

edges diverge

edges converge
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Loopy example

[ A. TRUE or B. FALSE? ]

5. P(B|D, E) < P(B|D)

The evidence is {D}.
There are two paths from B to E.

PathB — D — E
is blocked by node D,
satisfying condition (1).

Oo—@—0
Oo—@—=0

@zce O—@—O

®z¢e O—@—O
descendants(Z) N E =0 O

(1) ZzeE

edges align

edges diverge

edges converge
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Loopy example

[ A. TRUE or B. FALSE? ]

5. P(B|D, E) < P(B|D)

The evidence is {D}.
There are two paths from B to E.

PathB — D — E
is blocked by node D,
satisfying condition (1).

PathB—= D+ A—C—E
is not blocked by any node.

Oo—@—0
Oo—@—=0

@zce O—@—O

®z¢e O—@—O
descendants(Z) N E =0 O

(1) ZzeE

edges align

edges diverge

edges converge
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Loopy example

[ A. TRUE or B. FALSE? ]

5. P(B|D, E) < P(B|D)

The evidence is {D}.
There are two paths from B to E.

PathB — D — E
is blocked by node D,
satisfying condition (1).

PathB—= D+ A—C—E
is not blocked by any node.

The statement is false.

Oo—@—0
Oo—@—=0

@zce O—@—O

®z¢e O—@—O
descendants(Z) N E =0 O

(1) ZzeE

edges align

edges diverge

edges converge
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Markov Blanket

A Markov Blanket By of node X consists of parents of X,
children of X and "spouses” (other parents of children of X, but
not X) of X.
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Markov Blanket

A Markov Blanket By of node X consists of parents of X,
children of X and "spouses” (other parents of children of X, but

not X) of X.

ONO

Every variable is conditionally independent of any other
variable given it's Markov Blanket.



Markov Blanket

A Markov Blanket By of node X consists of parents of X,
children of X and "spouses” (other parents of children of X, but

not X) of X.
&

ONO

Every variable is conditionally independent of any other
variable given it's Markov Blanket.
126 /127



That's all folks!
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