CSE 150A-250A AI: Probabilistic Methods

Lecture 4

Fall 2025

Trevor Bonjour Department of Computer Science and Engineering University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof. Berg-Kirkpatrick)

Agenda

Review

Conditional probability tables

d-separation and examples

Review

Alarm example

A belief network (BN) is a directed acyclic graph (DAG) in which:

A belief network (BN) is a directed acyclic graph (DAG) in which:

1. Nodes represent random variables.

A belief network (BN) is a directed acyclic graph (DAG) in which:

- 1. Nodes represent random variables.
- 2. Edges represent (direct) dependencies.

A belief network (BN) is a directed acyclic graph (DAG) in which:

- 1. Nodes represent random variables.
- 2. Edges represent (direct) dependencies.
- 3. Conditional probability tables (CPTs) describe how each node depends on its parents.

BN = DAG + CPTs

$$P(X_i|X_1,\ldots,X_{i-1}) \ = \ P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i) \subseteq \{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i .

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i)\subseteq\{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i . In words: Each variable is conditionally independent of its non-descendants given it's parents.

· Missing edges encode assumptions of independence:

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i)\subseteq\{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i . In words: Each variable is conditionally independent of its non-descendants given it's parents.

· Alarm example:

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i)\subseteq\{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i . In words: Each variable is conditionally independent of its non-descendants given it's parents.

· Missing edges encode assumptions of independence:

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i)\subseteq\{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i . In words: Each variable is conditionally independent of its non-descendants given it's parents.

· Alarm example:

$$P(E) = P(E|B)$$

$$P(J|A) = P(J|A, B, E)$$

$$P(M|A) = P(M|A, B, E, J)$$

· Missing edges encode assumptions of independence:

$$P(X_i|X_1,\ldots,X_{i-1})=P(X_i|\operatorname{pa}(X_i))$$
 where $\operatorname{pa}(X_i)\subseteq\{X_1,\ldots,X_{i-1}\}$ denotes the **parents** of node X_i . In words: Each variable is conditionally independent of its non-descendants given it's parents.

· Alarm example:

$$P(E) = P(E|B)$$

$$P(J|A) = P(J|A, B, E)$$

$$P(M|A) = P(M|A, B, E, J)$$

These are true no matter what CPTs are attached to the nodes in the DAG.

Conditional probability tables

Representing CPTs

Representing CPTs

• How to represent $P(Y|X_1, X_2, \dots, X_k)$?

Representing CPTs

- How to represent $P(Y|X_1, X_2, ..., X_k)$?
- · Simplest case:

Suppose $X_i \in \{0,1\}$, $Y \in \{0,1\}$ are binary random variables.

How to represent $P(Y=1|X_1,X_2,\ldots,X_k)$?

Types of CPTs

- 1. Tabular
 - 2. Logical / Deterministic
 - 3. Noisy-OR
 - 4. Sigmoid

X_1	X_2		X_k	$P(Y=1 X_1,X_2,\ldots,X_k)$
0	0		0	0.1
1	0		0	0.6
0	1		0	0.3
:	:	:	:	:
1	1		1	0.2

X_1	X ₂		X_k	$P(Y=1 X_1,X_2,\ldots,X_k)$
0	0		0	0.1
1	0		0	0.6
0	1		0	0.3
1	:	:	:	:
1	1		1	0.2

A lookup table can exhaustively enumerate a conditional probability for every configuration of parents.

X_1	X_2		X_k	$P(Y=1 X_1,X_2,\ldots,X_k)$
0	0		0	0.1
1	0		0	0.6
0	1		0	0.3
:	:	:	:	:
1	1		1	0.2

A lookup table can exhaustively enumerate a conditional probability for every configuration of parents.

Pro

Able to model arbitrarily complicated dependence.

X_1	X_2		X_k	$P(Y=1 X_1,X_2,\ldots,X_k)$
0	0		0	0.1
1	0		0	0.6
0	1		0	0.3
:	:	:	:	:
1	1		1	0.2

A lookup table can exhaustively enumerate a conditional probability for every configuration of parents.

Pro Able to model arbitrarily complicated dependence.

Con A table with 2^k rows is too unwieldy for large k.

CPTs can also mimic the behavior of logical circuits.

CPTs can also mimic the behavior of logical circuits.

AND gate

CPTs can also mimic the behavior of logical circuits.

AND gate
$$P(Y=1|X_1,X_2,\ldots,X_k) = \prod_{i=1}^k X_i$$

CPTs can also mimic the behavior of logical circuits.

AND gate
$$P(Y=1|X_1,X_2,\ldots,X_k) = \prod_{i=1}^k X_i$$

OR gate

CPTs can also mimic the behavior of logical circuits.

AND gate
$$P(Y=1|X_1, X_2, ..., X_k) = \prod_{i=1}^{k} X_i$$

OR gate $P(Y=0|X_1, X_2, ..., X_k) = \prod_{i=1}^{k} (1-X_i)$

CPTs can also mimic the behavior of logical circuits.

AND gate
$$P(Y=1|X_1, X_2, ..., X_k) = \prod_{i=1}^{k} X_i$$

OR gate $P(Y=0|X_1, X_2, ..., X_k) = \prod_{i=1}^{k} (1-X_i)$

Pro Compact representation for large *k*.

CPTs can also mimic the behavior of logical circuits.

AND gate
$$P(Y=1|X_1,X_2,\ldots,X_k) = \prod_{i=1}^{R} X_i$$

OR gate
$$P(Y=0|X_1,X_2,...,X_k) = \prod_{i=1}^{k} (1-X_i)$$

Pro Compact representation for large *k*.

Con No model of uncertainty.

Use k numbers $p_i \in [0,1]$ to parameterize all 2^k entries in the CPT:

Use k numbers $p_i \in [0,1]$ to parameterize all 2^k entries in the CPT:

$$P(Y=0|X_1,X_2,...,X_k) = \prod_{i=1}^k (1-p_i)_{i}^{X_i} \qquad (|-X_i|)$$

Use k numbers $p_i \in [0,1]$ to parameterize all 2^k entries in the CPT: \sum

$$P(Y=0|X_{1},X_{2},...,X_{k}) = \prod_{i=1}^{k} (1-p_{i})^{X_{i}} \times_{1} = 0$$

$$P(Y=1|X_{1},X_{2},...,X_{k}) = 1 - \left(\prod_{i=1}^{k} (1-p_{i})^{X_{i}}\right) = 7 \text{ 1}$$

$$= 1 - \left(1-p_{3}\right) \left(1-p_{4}\right) \times_{1} = 0$$

$$= -\left(\frac{1}{2} \times 1\right) \times_{1} = 0$$

Use k numbers $p_i \in [0,1]$ to parameterize all 2^k entries in the CPT:

$$P(Y=0|X_1,X_2,...,X_k) = \prod_{i=1}^k (1-p_i)^{X_i}$$

$$P(Y=1|X_1,X_2,...,X_k) = 1-\prod_{i=1}^k (1-p_i)^{X_i}$$

But why is this called Noisy-OR?

· When all parents are equal to zero:

· When all parents are equal to zero:

$$P(Y=1|X_1=0,X_2=0,...,X_k=0)$$

· When all parents are equal to zero;

$$P(Y=1|X_1=0,X_2=0,...,X_k=0) = 1-\prod_{i=1}^{n}(1-p_i)^0$$

· When all parents are equal to zero;

$$P(Y=1|X_1=0,X_2=0,\ldots,X_k=0) = 1 - \prod_{i=1}^k (1-p_i)^0 = 1 - \prod_{i=1}^k (1)$$

· When all parents are equal to zero;

$$P(Y=1|X_1=0,X_2=0,\ldots,X_k=0) = 1 - \prod_{i=1}^{R} (1-p_i)^0 = 1 - \prod_{i=1}^{R} (1) = 0$$

• When all parents are equal to zero; $P(Y=1|X_1=0,X_2=0,...,X_k=0) = 1 - \prod_{i=1}^{k} (1-p_i)^0 = 1 - \prod_{i=1}^{k} (1) = 0$

 \cdot When all parents are equal to zero; $_{\!k}$

$$P(Y=1|X_1=0,X_2=0,...,X_k=0) = 1 - \prod_{i=1}^{K} (1-p_i)^0 = 1 - \prod_{i=1}^{K} (1) = 0$$

$$P(Y=1|X_1=0,...,X_{j-1}=0,X_j=1,X_{j+1}=0,...,X_k=0)$$

· When all parents are equal to zero; $_{\!k}$

$$P(Y=1|X_1=0,X_2=0,...,X_k=0) = 1-\prod_{i=1}^{K}(1-p_i)^0 = 1-\prod_{i=1}^{K}(1) = 0$$

$$P(Y=1|X_1=0,...,X_{j-1}=0,X_j=1,X_{j+1}=0,...,X_k=0)$$

$$= 1-(1-p_1)^0 \cdot \cdot \cdot (1-p_{j-1})^0 (1-p_j)^1 (1-p_{j+1})^0 \cdot \cdot \cdot (1-p_k)^0$$

- When all parents are equal to zero; $_{\!k}$

$$P(Y=1|X_1=0,X_2=0,...,X_k=0) = 1 - \prod_{i=1}^{n} (1-p_i)^0 = 1 - \prod_{i=1}^{n} (1) = 0$$

$$P(Y=1|X_1=0,...,X_{j-1}=0,X_j=1,X_{j+1}=0,...,X_k=0)$$

$$= 1 - (1-p_1)^0 \cdot \cdot \cdot (1-p_{j-1})^0 (1-p_j)^1 (1-p_{j+1})^0 \cdot \cdot \cdot (1-p_k)^0$$

$$= 1 - (1-p_j)$$

• When all parents are equal to zero: $P(Y=1|X_1=0,X_2=0,...,X_k=0) = 1 - \prod_{i=1}^{k} (1-p_i)^0 = 1 - \prod_{i=1}^{k} (1) = 0$

$$P(Y=1|X_1=0,...,X_{j-1}=0,X_j=1,X_{j+1}=0,...,X_k=0)$$

$$= 1 - (1-p_1)^0 \cdots (1-p_{j-1})^0 (1-p_j)^1 (1-p_{j+1})^0 \cdots (1-p_k)^0$$

$$= 1 - (1-p_j)$$

$$= p_j$$

Modeling uncertainty

• Modeling uncertainty Intuitively, $p_i \in [0,1]$ is the probability that $X_i = 1$ by itself triggers Y = 1.

- Modeling uncertainty Intuitively, $p_i \in [0,1]$ is the probability that $X_i = 1$ by itself triggers Y = 1.
- · Logical OR as special case

- Modeling uncertainty Intuitively, $p_i \in [0,1]$ is the probability that $X_i = 1$ by itself triggers Y = 1.
- Logical OR as special case We recover a logical OR gate by taking the limit $p_i \rightarrow 1$ for all parents i = 1, 2, ..., k.

- Modeling uncertainty Intuitively, $p_i \in [0,1]$ is the probability that $X_i = 1$ by itself triggers Y = 1.
- Logical OR as special case
 We recover a logical OR gate by taking the limit p_i→1 for all parents i = 1, 2, ..., k.
- Canonical application

- Modeling uncertainty Intuitively, $p_i \in [0,1]$ is the probability that $X_i = 1$ by itself triggers Y = 1.
- Logical OR as special case

 We recover a logical OR gate by taking the limit $p_i \rightarrow 1$ for all parents i = 1, 2, ..., k.
- Canonical application

 The parents $\{X_i\}_{i=1}^k$ are diseases, and the child Y is a symptom.

 The more diseases, the more likely is the symptom.

4. Sigmoid CPT

Use k real numbers $\theta_i \in \Re$ to parameterize all 2^k entries in the CPT:

4. Sigmoid CPT

Use k real numbers $\theta_i \in \Re$ to parameterize all 2^k entries in the CPT:

$$P(Y=1|X_1,X_2,\ldots,X_k) = \sigma\left(\sum_{i=1}^k \theta_i X_i\right)$$

4. Sigmoid CPT

Use k real numbers $\theta_i \in \Re$ to parameterize all 2^k entries in the CPT:

$$P(Y=1|X_1,X_2,\ldots,X_k) = \sigma\left(\sum_{i=1}^k \theta_i X_i\right)$$

The function on the right hand side is called the **sigmoid** function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Other uses of sigmoid functions:

Other uses of sigmoid functions:

- · Activation function in neural nets
- Inverse of the link function for logistic regression

Other uses of sigmoid functions:

- · Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

Other uses of sigmoid functions:

- Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

• If $\theta_i > 0$, then $X_i = 1$ favors Y = 1.

$$P(Y=1|X_1,X_2,\ldots,X_k) = \sigma\left(\sum_{i=1}^k \theta_i X_i\right)$$

Other uses of sigmoid functions:

- Activation function in neural nets
- · Inverse of the link function for logistic regression

Properties:

- If $\theta_i > 0$, then $X_i = 1$ favors Y = 1.
- If $\theta_i < 0$, then $X_i = 1$ inhibits Y = 1.

$$P(Y=1|X_1,X_2,\ldots,X_k) = \sigma\left(\sum_{i=1}^k \theta_i X_i\right)$$

Other uses of sigmoid functions:

- · Activation function in neural nets
- Inverse of the link function for logistic regression

Properties:

- If $\theta_i > 0$, then $X_i = 1$ favors Y = 1.
- If θ_i < 0, then $X_i = 1$ inhibits Y = 1.
- These effects can mix in a sigmoid CPT (unlike noisy-OR).

d-separation and examples

· What we've already seen

· What we've already seen

A node X_i is conditionally independent of its non-parent ancestors given its parents:

$$P(X_i|X_1,X_2,\ldots,X_{i-1}) = P(X_i|pa(X_i))$$

· What we've already seen

A node X_i is conditionally independent of its non-parent ancestors given its parents:

$$P(X_i|X_1,X_2,...,X_{i-1}) = P(X_i|pa(X_i))$$

· What we can ask more generally

Let X, Y, and E refer to <u>disjoint sets</u> of nodes in a BN. When is X conditionally independent of Y given E?

· What we've already seen

A node X_i is conditionally independent of its non-parent ancestors given its parents:

$$P(X_i|X_1,X_2,...,X_{i-1}) = P(X_i|pa(X_i))$$

· What we can ask more generally

Let X, Y, and E refer to disjoint sets of nodes in a BN. When is X conditionally independent of Y given E?

X II J | E

When is
$$\left\{ \begin{array}{ll} P(X|E,Y) & = & P(X|E) \\ P(Y|E,X) & = & P(Y|E) \\ P(X,Y|E) & = & P(X|E) P(Y|E) \end{array} \right\} ?$$

· What we've already seen

A node X_i is conditionally independent of its non-parent ancestors given its parents:

$$P(X_i|X_1,X_2,...,X_{i-1}) = P(X_i|pa(X_i))$$

· What we can ask more generally

Let *X*, *Y*, and *E* refer to disjoint *sets* of nodes in a BN. When is *X* conditionally independent of *Y* given *E*?

When is
$$\left\{ \begin{array}{ll} P(X|\textbf{\textit{E}},Y) & = & P(X|\textbf{\textit{E}}) \\ P(Y|\textbf{\textit{E}},X) & = & P(Y|\textbf{\textit{E}}) \\ P(X,Y|\textbf{\textit{E}}) & = & P(X|\textbf{\textit{E}}) P(Y|\textbf{\textit{E}}) \end{array} \right\} \quad ?$$

· Above is special case

$$X = \{X_i\}, \quad E = pa(X_i) \quad Y = \{X_1, X_2, \dots, X_{i-1}\} - pa(X_i)$$

X; 117 / B(x;)

Base Cases

d-separation in DAGs

d-separation = direction-dependent separation

d-separation in DAGs

d-separation = direction-dependent separation

Motivation

How is conditional independence in a BN encoded by the structure of its DAG?

d-separation in DAGs

d-separation = direction-dependent separation

Motivation

How is conditional independence in a BN encoded by the structure of its DAG?

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

d-separation in DAGs

d-separation = direction-dependent separation

· Motivation

How is conditional independence in a BN encoded by the structure of its DAG?

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

What counts as a path, and when is it blocked?

Paths in DAGs

· Definition

A path is any sequence of nodes connected by edges (regardless of their directionalities); it is also assumed that no nodes repeat.

Paths in DAGs

Definition

A path is any sequence of nodes connected by edges (regardless of their directionalities); it is also assumed that no nodes repeat.

· Examples

Paths in DAGs

· Definition

A path is any sequence of nodes connected by edges (regardless of their directionalities); it is also assumed that no nodes repeat.

· Examples

Two ? paths from A to D:

(1)
$$A \rightarrow C \rightarrow B \rightarrow D$$

$$(2) A \rightarrow C \rightarrow F \leftarrow D$$

· Definition

· Definition

· Definition

· Definition

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

Intuition

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Intuition

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Intuition

 $Z_1 \in \mathbf{E}$ is an intervening event in a causal chain

Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Intuition

Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Intuition

 $Z_1 \in E$ is an intervening event in a causal chain

 $Z_2 \in E$ is a common explanation or cause

 $Z_3 \notin \mathbf{E}, \operatorname{desc}(Z_3) \cap \mathbf{E} = \emptyset$ is an unobserved common effect

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

Proof (not given)

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Proof (not given)

The proof of the theorem is non-trivial. You are **not** responsible for its proof.

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

Proof (not given)
 The proof of the theorem is non-trivial.
 You are not responsible for its proof.

· How useful is the theorem?

· Theorem

P(X, Y|E) = P(X|E) P(Y|E) if and only if every path from a node in X to a node in Y is blocked by E.

· Proof (not given)

The proof of the theorem is non-trivial. You are **not** responsible for its proof.

· How useful is the theorem? Very!

There are efficient algorithms to test d-separation in large BNs. You should become skilled at these tests in simple BNs.

1.
$$P(B|A, M) \stackrel{?}{=} P(B|A)$$

$$X = \{33\}$$

A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$ The evidence is $\{A\}$.

A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$ The evidence is $\{A\}$. There is one path $B \to A \to M$.

A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$ The evidence is $\{A\}$. There is one path $B \to A \to M$. Node A satisfies condition (1).

A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$

The evidence is $\{A\}$. There is one path $B \to A \to M$. Node A satisfies condition (1). The statement is **true**.

- P(B|A, M) ? P(B|A)
 The evidence is {A}.
 There is one path B → A → M.
 Node A satisfies condition (1).
 The statement is true.
- 2. $P(J, M|A) \stackrel{?}{=} P(J|A) P(M|A)$

- P(B|A, M) ? P(B|A)
 The evidence is {A}.
 There is one path B → A → M.
 Node A satisfies condition (1).
 The statement is true.
- 2. $P(J, M|A) \stackrel{?}{=} P(J|A) P(M|A)$ The evidence is $\{A\}$.

- 1. $P(B|A, M) \stackrel{?}{=} P(B|A)$ The evidence is $\{A\}$. There is one path $B \to A \to M$. Node A satisfies condition (1). The statement is **true**.
- 2. $P(J, M|A) \stackrel{?}{=} P(J|A) P(M|A)$ The evidence is $\{A\}$. There is one path $J \leftarrow A \rightarrow M$.

A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$ The evidence is $\{A\}$. There is one path $B \to A \to M$. Node A satisfies condition (1). The statement is true

2. $P(J, M|A) \stackrel{?}{=} P(J|A) P(M|A)$ The evidence is $\{A\}$. There is one path $J \leftarrow A \rightarrow M$. Node A satisfies condition (2).

A. TRUE or B. FALSE?

1. $P(B|A, M) \stackrel{?}{=} P(B|A)$

The evidence is $\{A\}$. There is one path $B \to A \to M$. Node A satisfies condition (1). The statement is **true**.

2. $P(J, M|A) \stackrel{?}{=} P(J|A) P(M|A)$ The evidence is $\{A\}$. There is one path $J \leftarrow A \rightarrow M$. Node A satisfies condition (2). The statement is **true**.

Alarm example (con't)

Alarm example (con't)

3.
$$P(B) \stackrel{?}{=} P(B|E)$$

Alarm example (con't)

A. TRUE or B. FALSE?

3. $P(B) \stackrel{?}{=} P(B|E)$ The evidence is {}.

A. TRUE or B. FALSE?

3. $P(B) \stackrel{?}{=} P(B|E)$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$.

A. TRUE or B. FALSE?

3. $P(B) \stackrel{?}{=} P(B|E)$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3).

A. TRUE or B. FALSE?

3. $P(B) \stackrel{?}{=} P(B|E)$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is **true**.

A. TRUE or B. FALSE?

3.
$$P(B) \stackrel{?}{=} P(B|E)$$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is **true**.

4.
$$P(B|M) \stackrel{?}{=} P(B|M, E)$$

A. TRUE or B. FALSE?

3. $P(B) \stackrel{?}{=} P(B|E)$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is **true**.

4. $P(B|M) \stackrel{?}{=} P(B|M, E)$ The evidence is $\{M\}$.

A. TRUE or B. FALSE?

3.
$$P(B) \stackrel{?}{=} P(B|E)$$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is **true**.

4. $P(B|M) \stackrel{?}{=} P(B|M, E)$ The evidence is $\{M\}$. There is one path $B \to A \leftarrow E$.

A. TRUE or B. FALSE?

3.
$$P(B) \stackrel{?}{=} P(B|E)$$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is **true**.

4. $P(B|M) \stackrel{?}{=} P(B|M, E)$ The evidence is $\{M\}$. There is one path $B \to A \leftarrow E$. Note that $M \in \operatorname{desc}(A)$.

A. TRUE or B. FALSE?

3.
$$P(B) \stackrel{?}{=} P(B|E)$$

The evidence is $\{\}$. There is one path $B \to A \leftarrow E$. Node A satisfies condition (3). The statement is **true**.

4. $P(B|M) \stackrel{?}{=} P(B|M, E)$ The evidence is $\{M\}$. There is one path $B \to A \leftarrow E$. Note that $M \in \operatorname{desc}(A)$. The statement is **false**.

A. TRUE or B. FALSE?

A. TRUE or B. FALSE?

5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

A. TRUE or B. FALSE?

5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

The evidence is $\{D\}$.

A. TRUE or B. FALSE?

5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

The evidence is $\{D\}$.

There are two paths from *B* to *E*.

A. TRUE or B. FALSE?

5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

The evidence is $\{D\}$. There are two paths from B to E.

Path $B \rightarrow D \rightarrow E$ is blocked by node D, satisfying condition (1).

A. TRUE or B. FALSE?

5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

The evidence is $\{D\}$. There are two paths from B to E.

Path $B \rightarrow D \rightarrow E$ is blocked by node D, satisfying condition (1).

Path $B \to D \leftarrow A \to C \to E$ is not blocked by any node.

A. TRUE or B. FALSE?

5.
$$P(B|D, E) \stackrel{?}{=} P(B|D)$$

The evidence is $\{D\}$. There are two paths from B to E.

Path $B \rightarrow D \rightarrow E$ is blocked by node D, satisfying condition (1).

Path $B \to D \leftarrow A \to C \to E$ is not blocked by any node.

The statement is false.

Markov Blanket

A Markov Blanket B_X of node X consists of parents of X, children of X and "spouses" (other parents of children of X, but not X) of X.

Markov Blanket

A Markov Blanket B_X of node X consists of parents of X, children of X and "spouses" (other parents of children of X, but not X) of X.

Every variable is conditionally independent of any other variable given it's Markov Blanket.

Markov Blanket

A Markov Blanket B_X of node X consists of parents of X, children of X and "spouses" (other parents of children of X, but not X) of X.

Every variable is conditionally independent of any other variable given it's Markov Blanket.

That's all folks!