
CSE 150A-250A AI: Probabilistic Methods

Lecture 5
Fall 2025
Trevor Bonjour
Department of Computer Science and Engineering
University of California, San Diego

Slides adapted from previous versions of the course (Prof. Lawrence, Prof. Alvarado, Prof Berg-Kirkpatrick)

1 / 152

Agenda

Review

Inference

Exact Inference: Variable Elimination

Polytrees

Node clustering

Cutset conditioning

2 / 152

Review

d-separation and conditional independence

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Definition

A path ⇡ is blocked if there exists a node Z 2 ⇡ for which
one of three conditions holds:

A descendant of Z is any node
(e.g., child, grandchild) that lies
on a directed path from Z.

4 / 152

d-separation and conditional independence

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Definition

A path ⇡ is blocked if there exists a node Z 2 ⇡ for which
one of three conditions holds:

A descendant of Z is any node
(e.g., child, grandchild) that lies
on a directed path from Z.

5 / 152

d-separation and conditional independence

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Definition

A path ⇡ is blocked if there exists a node Z 2 ⇡ for which
one of three conditions holds:

A descendant of Z is any node
(e.g., child, grandchild) that lies
on a directed path from Z.

6 / 152

d-separation and conditional independence

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Definition

A path ⇡ is blocked if there exists a node Z 2 ⇡ for which
one of three conditions holds:

A descendant of Z is any node
(e.g., child, grandchild) that lies
on a directed path from Z.

7 / 152

d-separation and conditional independence

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Definition

A path ⇡ is blocked if there exists a node Z 2 ⇡ for which
one of three conditions holds:

Z causal chain

Z common cause

Z unobserved
common effect

(1)

(2)

(3)

A descendant of Z is any node
(e.g., child, grandchild) that lies
on a directed path from Z.

8 / 152

d-separation and conditional independence

• Theorem

P(X, Y|E) = P(X|E)P(Y|E) if and only if every path from a
node in X to a node in Y is blocked by E.

• Definition

A path ⇡ is blocked if there exists a node Z 2 ⇡ for which
one of three conditions holds:

Z causal chain

Z common cause

Z unobserved
common effect

(1)

(2)

(3)

A descendant of Z is any node
(e.g., child, grandchild) that lies
on a directed path from Z. 9 / 152

D-Separation Algorithm

1. Shade all observed nodes {Z1, . . . , Zk} in the graph.
2. Enumerate all undirected paths from X to Y .
3. For each path:

3.1 Decompose the path into triples (segments of 3 nodes).
3.2 If none of the d-separation blocking conditions apply to

any of the triples on the path, then the path is active and
d-connects X and Y . Return X 6? Y | {Z1, . . . , Zk}

4. If all paths are blocked , then

X ?? Y | {Z1, . . . , Zk}.

10 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.

11 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.

12 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.

There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.

13 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.

14 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.

15 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.

16 / 152

Loopy example

CA

D

E

B

Z

Z
edges align

Z edges diverge

Z edges converge

(1)

(2)

(3)

A. TRUE or B. FALSE?

5. P(B|D, E) ?
= P(B|D)

The evidence is {D}.
There are two paths from B to E.

Path B! D! E
is blocked by node D,
satisfying condition (1).

Path B! D A! C ! E
is not blocked by any node.

The statement is false.
17 / 152

Markov Blanket

A Markov Blanket Bx of node X consists of parents of X,
children of X and ”spouses” (other parents of children of X, but
not X) of X.

P1 P2

X

C1 C2

S2S1

Every variable is conditionally independent of any other
variable given it’s Markov Blanket.

18 / 152

Markov Blanket

A Markov Blanket Bx of node X consists of parents of X,
children of X and ”spouses” (other parents of children of X, but
not X) of X.

P1 P2

X

C1 C2

S2S1

Every variable is conditionally independent of any other
variable given it’s Markov Blanket.

19 / 152

Markov Blanket

A Markov Blanket Bx of node X consists of parents of X,
children of X and ”spouses” (other parents of children of X, but
not X) of X.

P1 P2

X

C1 C2

S2S1

Every variable is conditionally independent of any other
variable given it’s Markov Blanket.

20 / 152

Inference

Inference

• Problem

Given a set E of evidence nodes, and a set Q of query
nodes, how to compute the posterior distribution P(Q|E)?

• More precisely

How to express P(Q|E) in terms of the CPTs P(Xi|pa(Xi))
of the BN, which are assumed to be given?

• Tools at our disposal
Bayes rule marginal independence
marginalization conditional independence
product rule

22 / 152

Inference

• Problem

Given a set E of evidence nodes, and a set Q of query
nodes, how to compute the posterior distribution P(Q|E)?

• More precisely

How to express P(Q|E) in terms of the CPTs P(Xi|pa(Xi))
of the BN, which are assumed to be given?

• Tools at our disposal
Bayes rule marginal independence
marginalization conditional independence
product rule

23 / 152

Inference

• Problem

Given a set E of evidence nodes, and a set Q of query
nodes, how to compute the posterior distribution P(Q|E)?

• More precisely

How to express P(Q|E) in terms of the CPTs P(Xi|pa(Xi))
of the BN, which are assumed to be given?

• Tools at our disposal
Bayes rule marginal independence
marginalization conditional independence
product rule

24 / 152

Strategy to compute P(Q|E)

Use to express P(Q|E) in terms
Bayes rule of conditional probabilities that

respect the order of the DAG.

Use to introduce nodes on the left
marginalization side of the conditioning bar when

they need to appear as parents.

Use to express joint predictions
product rule (over multiple variables) in terms

of simpler individual predictions.

marginal and Use to remove non-informative
conditional variables from the right side
independence of the conditioning bar.

25 / 152

Strategy to compute P(Q|E)

Use to express P(Q|E) in terms
Bayes rule of conditional probabilities that

respect the order of the DAG.

Use to introduce nodes on the left
marginalization side of the conditioning bar when

they need to appear as parents.

Use to express joint predictions
product rule (over multiple variables) in terms

of simpler individual predictions.

marginal and Use to remove non-informative
conditional variables from the right side
independence of the conditioning bar.

26 / 152

Strategy to compute P(Q|E)

Use to express P(Q|E) in terms
Bayes rule of conditional probabilities that

respect the order of the DAG.

Use to introduce nodes on the left
marginalization side of the conditioning bar when

they need to appear as parents.

Use to express joint predictions
product rule (over multiple variables) in terms

of simpler individual predictions.

marginal and Use to remove non-informative
conditional variables from the right side
independence of the conditioning bar.

27 / 152

Strategy to compute P(Q|E)

Use to express P(Q|E) in terms
Bayes rule of conditional probabilities that

respect the order of the DAG.

Use to introduce nodes on the left
marginalization side of the conditioning bar when

they need to appear as parents.

Use to express joint predictions
product rule (over multiple variables) in terms

of simpler individual predictions.

marginal and Use to remove non-informative
conditional variables from the right side
independence of the conditioning bar.

28 / 152

Strategy to compute P(Q|E)

Use to express P(Q|E) in terms
Bayes rule of conditional probabilities that

respect the order of the DAG.

Use to introduce nodes on the left
marginalization side of the conditioning bar when

they need to appear as parents.

Use to express joint predictions
product rule (over multiple variables) in terms

of simpler individual predictions.

marginal and Use to remove non-informative
conditional variables from the right side
independence of the conditioning bar.

29 / 152

Inference Example

Q. What are the CPTs associated with the DAG shown
above?
A. P(B|J,M) B. P(B) C. P(A|B,E)
D. A, B and C E. B and C

30/ 152

Inference Example

Q. What are the CPTs associated with the DAG shown
above?
A. P(B|J,M) B. P(B) C. P(A|B,E)
D. A, B and C E. B and C

31 / 152

Inference example

A

B

J M

E

32 / 152

Inference Example

P(B|J = 1,M = 1) = ??

33 / 152

Inference Example: Enumeration

P(B|J = 1,M = 1) = P(B, J = 1,M = 1)
P(J = 1,M = 1)

= ↵P(B, j,m)

= ↵
X

e

X

a
P(B, j,m, E = e,A = a)

34 / 152

Inference Example: Enumeration

P(B|j,m) = ↵
X

E

X

A
P(B, j,m, E,A)

= ↵
X

E

X

A
P(B)P(E)P(A|B, E)P(j|A)P(m|A)

= ↵P(B)
X

E
P(E)

X

A
P(A|B, E)P(j|A)P(m|A)

35 / 152

Inference Example: Enumeration

P(b|j,m) = ↵P(b)
P

E P(E)
P

A P(A|b, E)P(j|A)P(m|A)

Image Source: Artificial Intelligence: A Modern Approach (Russell & Norvig, 2020)

Repeated Computations -> Dynamic Programming

36 / 152

Inference Example: Enumeration

P(b|j,m) = ↵P(b)
P

E P(E)
P

A P(A|b, E)P(j|A)P(m|A)

Image Source: Artificial Intelligence: A Modern Approach (Russell & Norvig, 2020)

Repeated Computations -> Dynamic Programming 37 / 152

Exact Inference: Variable Elimination

Variable Elimination

Variable Elimination

• Idea: Eliminate redundant calculations by storing
intermediate results in ”factors”.

• A factor is a function that takes in values of random
variables, and produces a number.

• Variable Elimination (VE) works by successively eliminating
all non-query, non-evidence variables, one at a time, until
only factors involving the query variables remain.

• To eliminate a variable:
• join all factors containing that variable.
• sum out the influence of the variable on the new factor.
• exploits product form of joint distribution.

39 / 152

Variable Elimination

Variable Elimination

• Idea: Eliminate redundant calculations by storing
intermediate results in ”factors”.

• A factor is a function that takes in values of random
variables, and produces a number.

• Variable Elimination (VE) works by successively eliminating
all non-query, non-evidence variables, one at a time, until
only factors involving the query variables remain.

• To eliminate a variable:
• join all factors containing that variable.
• sum out the influence of the variable on the new factor.
• exploits product form of joint distribution.

40 / 152

Variable Elimination

Variable Elimination

• Idea: Eliminate redundant calculations by storing
intermediate results in ”factors”.

• A factor is a function that takes in values of random
variables, and produces a number.

• Variable Elimination (VE) works by successively eliminating
all non-query, non-evidence variables, one at a time, until
only factors involving the query variables remain.

• To eliminate a variable:
• join all factors containing that variable.
• sum out the influence of the variable on the new factor.
• exploits product form of joint distribution.

41 / 152

VE Example

P(J) = ??

42 / 152

VE Example

P(J) =
X

M,A,B,E
P(J,M,A,B, E)

=
X

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
P(B)

X

E
P(A|B, E)P(E)

43 / 152

VE Example

P(J) =
X

M,A,B,E
P(J,M,A,B, E)

=
X

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
P(B)

X

E
P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
(P(B)f 1(A,B)

44 / 152

VE Example

P(J) =
X

M,A,B,E
P(J,M,A,B, E)

=
X

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
P(B)

X

E
P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
(P(B)f 1(A,B)

=
X

A
P(J|A)

X

M
P(M|A)f2(A)

45 / 152

VE Example

P(J) =
X

M,A,B,E
P(J,M,A,B, E)

=
X

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
P(B)

X

E
P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
(P(B)f 1(A,B)

=
X

A
P(J|A)

X

M
P(M|A)f2(A)

=
X

A
P(J|A)f3(A)

46 / 152

VE Example

P(J) =
X

M,A,B,E
P(J,M,A,B, E)

=
X

M,A,B,E
P(J|A)P(M|A)P(B)P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
P(B)

X

E
P(A|B, E)P(E)

=
X

A
P(J|A)

X

M
P(M|A)

X

B
(P(B)f 1(A,B)

=
X

A
P(J|A)

X

M
P(M|A)f2(A)

=
X

A
P(J|A)f3(A)

= f4(J)
47 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)
P

A P(A|B, E)P(j|A)P(m|A)

A P(J=1|A)
0 0.05
1 0.9

A P(M=1|A)
0 0.01
1 0.7

A P(j|A)P(m|A)
0
1

48/ 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)
P

A P(A|B, E)P(j|A)P(m|A)

A P(J=1|A)
0 0.05
1 0.9

A P(M=1|A)
0 0.01
1 0.7

A P(j|A)P(m|A)
0
1

49 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)
P

A P(A|B, E)P(j|A)P(m|A)

A P(J=1|A)
0 0.05
1 0.9

A P(M=1|A)
0 0.01
1 0.7

A f 1(A)
0 0.05⇥ 0.01
1 0.9⇥ 0.7

50 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)
P

A P(A|B, E)f 1(A)

A P(J=1|A)
0 0.05
1 0.9

A P(M=1|A)
0 0.01
1 0.7

A f 1(A)
0 0.0005
1 0.63

51 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)
P

A P(A|B, E)f 1(A)

A f 1(A)
0 0.0005
1 0.63

B E P(A|B,E)
0 0 0.001
1 0 0.94
0 1 0.29
1 1 0.0.95

B E f2(B, E)
0 0 0.001⇥0.63+0.999⇥0.0005
1 0 0.94⇥0.63+0.06⇥0.0005
0 1 0.29⇥0.63+0.71⇥0.0005
1 1 0.0.95⇥0.63+0.05⇥0.0005

52 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)
P

A P(A|B, E)f 1(A)

A f 1(A)
0 0.0005
1 0.63

B E P(A|B,E)
0 0 0.001
1 0 0.94
0 1 0.29
1 1 0.0.95

B E f2(B, E)
0 0 0.001⇥0.63+0.999⇥0.0005
1 0 0.94⇥0.63+0.06⇥0.0005
0 1 0.29⇥0.63+0.71⇥0.0005
1 1 0.0.95⇥0.63+0.05⇥0.0005

53 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)f2(B, E)

A f 1(A)
0 0.05⇥ 0.01
1 0.9⇥ 0.7

B E P(A|B,E)
0 0 0.001
1 0 0.94
0 1 0.29
1 1 0.0.95

B E f2(B, E)
0 0 0.001
1 0 0.59
0 1 0.18
1 1 0.60

54 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)f2(B, E)

P(B = 1) = 0.001
P(E = 1) = 0.002

B E f2(B, E)
0 0 0.001
1 0 0.59
0 1 0.18
1 1 0.60

B f3(B)
0 0.18⇥0.002⇥0.999+ 0.001⇥0.998⇥0.999
1 0.60⇥0.002⇥0.001+0.59⇥0.998⇥0.001

55 / 152

VE Example

P(B|j,m) = ↵P(B)
P

E P(E)f2(B, E)

P(B = 1) = 0.001
P(E = 1) = 0.002

B E f2(B, E)
0 0 0.001
1 0 0.59
0 1 0.18
1 1 0.60

B f3(B)
0 0.18⇥0.002⇥0.999+ 0.001⇥0.998⇥0.999
1 0.60⇥0.002⇥0.001+0.59⇥0.998⇥0.001

56 / 152

VE Example

P(B|j,m) = ↵f3(B)

P(B = 1) = 0.001
P(E = 1) = 0.002

B E f2(B, E)
0 0 0.001
1 0 0.59
0 1 0.18
1 1 0.60

B f3(B)
0 0.0013
1 0.0006

57 / 152

VE Example

P(B|j,m) = ↵f3(B)

P(B = 1) = 0.001
P(E = 1) = 0.002

B E f2(B, E)
0 0 0.001
1 0 0.59
0 1 0.18
1 1 0.60

B f3(B)
0 0.0013
1 0.0006

58 / 152

VE Example

↵f3(B)! P(B|j,m)

B f3(B)
0 0.0013
1 0.0006

N = 0.0013+ 0.0006 = 0.0019

B P(B|j,m)

0 0.68
1 0.32

59 / 152

VE: Factors

• Factors are usually represented as a table (therefore an
arbitrary function)

• Caution: Factors can look like CPTs, and CPTs can be
represented as factors, but factors are not necessarily
probabilities!

• The values in factors only represent intermediate values in
the calculations of some probability - with no real
meaning in themselves.

60 / 152

VE: Complexity

Does order of elimination matter?

• In general, yes (but not in the trivial graphs we’ve been
considering)

• Time and space of VE is dominated by the largest factor
created

• Heuristic: Eliminate the variable that will lead to the
smallest next factor being created

• In a polytree this leads to linear time inference (in size of
largest CPT).

61 / 152

Polytrees

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

63 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

64 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:

between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

65 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

66 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

67 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

68 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

69 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

70 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents.

71 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees.

But not vice versa!
A node in a polytree may
have multiple parents.

72 / 152

Polytrees

• Definition

A polytree is a singly connected belief network:
between any two nodes there is at most one path.

Alternatively, a polytree is a belief network without
any loops (i.e., undirected cycles).

• Examples

All trees are polytrees. But not vice versa!
A node in a polytree may
have multiple parents. 73 / 152

Exact Inference in loopy BNs

But many interesting BNs are not polytrees!

How to compute P(Di=1|S1, S2, . . . , Sn)?

What are general strategies for inference in these BNs?

74 / 152

Exact Inference in loopy BNs

But many interesting BNs are not polytrees!

How to compute P(Di=1|S1, S2, . . . , Sn)?

What are general strategies for inference in these BNs?

75 / 152

Exact Inference in loopy BNs

But many interesting BNs are not polytrees!

D1 D2

S2S1

Dk

Sn

. . .

. . .

diseases

symptoms

How to compute P(Di=1|S1, S2, . . . , Sn)?

What are general strategies for inference in these BNs?

76 / 152

Exact Inference in loopy BNs

But many interesting BNs are not polytrees!

D1 D2

S2S1

Dk

Sn

. . .

. . .

diseases

symptoms

How to compute P(Di=1|S1, S2, . . . , Sn)?

What are general strategies for inference in these BNs?

77 / 152

Exact Inference in loopy BNs

But many interesting BNs are not polytrees!

D1 D2

S2S1

Dk

Sn

. . .

. . .

diseases

symptoms

How to compute P(Di=1|S1, S2, . . . , Sn)?

What are general strategies for inference in these BNs?

78 / 152

Exact inference in loopy BNs

• Main idea

Can we transform a loopy BN into a polytree?
If so, then we can run the exact inference algorithm.

• Example

We’ll use a simple BN with binary variables to illustrate
two different ways of doing this.

79 / 152

Exact inference in loopy BNs

• Main idea

Can we transform a loopy BN into a polytree?
If so, then we can run the exact inference algorithm.

• Example

We’ll use a simple BN with binary variables to illustrate
two different ways of doing this.

80 / 152

Exact inference in loopy BNs

• Main idea

Can we transform a loopy BN into a polytree?

If so, then we can run the exact inference algorithm.

• Example

We’ll use a simple BN with binary variables to illustrate
two different ways of doing this.

81 / 152

Exact inference in loopy BNs

• Main idea

Can we transform a loopy BN into a polytree?
If so, then we can run the exact inference algorithm.

• Example

We’ll use a simple BN with binary variables to illustrate
two different ways of doing this.

82 / 152

Exact inference in loopy BNs

• Main idea

Can we transform a loopy BN into a polytree?
If so, then we can run the exact inference algorithm.

• Example

We’ll use a simple BN with binary variables to illustrate
two different ways of doing this.

83 / 152

Exact inference in loopy BNs

• Main idea

Can we transform a loopy BN into a polytree?
If so, then we can run the exact inference algorithm.

• Example

We’ll use a simple BN with binary variables to illustrate
two different ways of doing this.

D

S2S1 S3

disease

symptoms

V visit to doctor

84 / 152

1. Node clustering

• Key idea

Merge (well-chosen) nodes in the DAG to remove loops,
so that what remains is a polytree.

• Example

Cluster nodes {S1, S2, S3}
into mega-node S.

Merge CPTs at these nodes
into mega-CPT P(S|D).

85 / 152

1. Node clustering

• Key idea

Merge (well-chosen) nodes in the DAG to remove loops,
so that what remains is a polytree.

• Example

Cluster nodes {S1, S2, S3}
into mega-node S.

Merge CPTs at these nodes
into mega-CPT P(S|D).

86 / 152

1. Node clustering

• Key idea

Merge (well-chosen) nodes in the DAG to remove loops,
so that what remains is a polytree.

• Example

Cluster nodes {S1, S2, S3}
into mega-node S.

Merge CPTs at these nodes
into mega-CPT P(S|D).

87 / 152

1. Node clustering

• Key idea

Merge (well-chosen) nodes in the DAG to remove loops,
so that what remains is a polytree.

• Example

D

S2S1 S3

V

D

S

V

OLD NEW

Cluster nodes {S1, S2, S3}
into mega-node S.

Merge CPTs at these nodes
into mega-CPT P(S|D).

88 / 152

1. Node clustering

• Key idea

Merge (well-chosen) nodes in the DAG to remove loops,
so that what remains is a polytree.

• Example

D

S2S1 S3

V

D

S

V

OLD NEW Cluster nodes {S1, S2, S3}
into mega-node S.

Merge CPTs at these nodes
into mega-CPT P(S|D).

89 / 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro The graph simplifies to a polytree.
Con The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8

90/ 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro The graph simplifies to a polytree.
Con The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8

91 / 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro

The graph simplifies to a polytree.
Con The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8

92 / 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro The graph simplifies to a polytree.

Con The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8

93 / 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro The graph simplifies to a polytree.
Con

The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8

94 / 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro The graph simplifies to a polytree.
Con The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8

95 / 152

Old versus new nodes

D

S2S1 S3

V

D

S

V

OLD NEW S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

Pro The graph simplifies to a polytree.
Con The node becomes (exponentially) more complex:

|S| = |S1| · |S2| · |S3| = 23 = 8
96 / 152

Old versus new CPTs

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

OLD NEW

P(S1|D)
P(S2|D) P(S|D) = P(S1, S2, S3|D) =

Q3
i=1 P(Si|D)

P(S3|D)

P(V|S1, S2, S3) P(V|S) = P(V|S1, S2, S3)

97 / 152

Old versus new CPTs

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

OLD NEW

P(S1|D)
P(S2|D) P(S|D) = P(S1, S2, S3|D) =

Q3
i=1 P(Si|D)

P(S3|D)

P(V|S1, S2, S3) P(V|S) = P(V|S1, S2, S3)

98 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:
P(S=5|D=0) = P(S1=1, S2=0, S3=1|D=0)

= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5) = P(V|S1=1, S2=0, S3=1)

99 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:

P(S=5|D=0) = P(S1=1, S2=0, S3=1|D=0)
= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5) = P(V|S1=1, S2=0, S3=1)

100 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:
P(S=5|D=0)

= P(S1=1, S2=0, S3=1|D=0)
= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5) = P(V|S1=1, S2=0, S3=1)

101 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:
P(S=5|D=0) = P(S1=1, S2=0, S3=1|D=0)

= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5) = P(V|S1=1, S2=0, S3=1)

102 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:
P(S=5|D=0) = P(S1=1, S2=0, S3=1|D=0)

= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5) = P(V|S1=1, S2=0, S3=1)

103 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:
P(S=5|D=0) = P(S1=1, S2=0, S3=1|D=0)

= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5)

= P(V|S1=1, S2=0, S3=1)

104 / 152

Worked example

S3 S2 S1 S
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

D

S2S1 S3

V

D

S

V

OLD NEW

To calculate the new CPTs:
P(S=5|D=0) = P(S1=1, S2=0, S3=1|D=0)

= P(S1=1|D=0)P(S2=0|D=0)P(S3=1|D=0)

P(V=1|S=5) = P(V|S1=1, S2=0, S3=1)

105 / 152

Which nodes to cluster?

D

S2S1 S3

V

D

S

V

OLD NEW

In this BN, we can eyeball the right nodes to cluster.

What about in larger BNs?

106 / 152

Which nodes to cluster?

D

S2S1 S3

V

D

S

V

OLD NEW

In this BN, we can eyeball the right nodes to cluster.

What about in larger BNs?

107 / 152

Which nodes to cluster?

D

S2S1 S3

V

D

S

V

OLD NEW

In this BN, we can eyeball the right nodes to cluster.

What about in larger BNs?

108 / 152

General case

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

109 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

110 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.

Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

111 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

112 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

113 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.

CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

114 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

115 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

116 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?

There is no efficient algorithm to find this!

117 / 152

General case

D

S2S1 S3

V

D

S

V

OLD NEW

• It seems simple enough:

Cluster nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BN.

• But there are tradeoffs:

The exact inference algorithm scales linearly in the size of
CPTs.
CPTs grow exponentially when nodes are clustered.

• Can we optimize this tradeoff?

Which clustering leads to maximally efficient inference?
There is no efficient algorithm to find this!

118 / 152

A different approach?

What if, instead of merging nodes, we remove them?

119 / 152

A different approach?

D

S2S1 S3

disease

symptoms

V visit to doctor

What if, instead of merging nodes, we remove them?

120 / 152

A different approach?

D

S2S1 S3

disease

symptoms

V visit to doctor

What if, instead of merging nodes, we remove them?

121 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

122 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

123 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.

Call the exact inference algorithm for each possible
instantiation.

• Example

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

124 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

125 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

126 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

127 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Definition

The set of instantiated nodes is called the cutset.

By removing them, we cut the BN into polytrees.

128 / 152

2. Cutset conditioning

• Key idea

Remove one or more nodes by instantiating them as
evidence.
Call the exact inference algorithm for each possible
instantiation.

• Example

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Definition

The set of instantiated nodes is called the cutset.
By removing them, we cut the BN into polytrees.

129 / 152

Worked example

How to calculate P(V=1)?

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

130 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

131 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

132 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.

(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

133 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

134 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1)

=
X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

135 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

136 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)

137 / 152

Worked example

How to calculate P(V=1)?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

• Run the exact inference algorithm twice:

(1) Compute P(V=1|D=0) from the left polytree.
(2) Compute P(V=1|D=1) from the right polytree.

• Combine the results:
P(V=1) =

X

d
P(D=d, V=1) marginalization

=
X

d
P(D=d) P(V=1|D=d) product rule

= P(D=0)P(V=1|D=0) + P(D=1)P(V=1|D=1)
138 / 152

How to choose the cutset?

In this BN, we can eyeball the right node to instantiate.

What about in larger BNs?

139 / 152

How to choose the cutset?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

In this BN, we can eyeball the right node to instantiate.

What about in larger BNs?

140 / 152

How to choose the cutset?

D

S2S1 S3

V

= S2S1 S3

V

+ S2S1 S3

V

P(S1|D=1) P(S2|D=1) P(S3|D=1)

D=0 D=1

P(S1|D=0) P(S2|D=0) P(S3|D=0)

In this BN, we can eyeball the right node to instantiate.

What about in larger BNs?

141 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

142 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

143 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.

Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

144 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

145 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

146 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?

This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

147 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

148 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this!

149 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?

There is no efficient algorithm to compute this!

150 / 152

General case

• It seems simple enough:

Instantiate nodes as needed to remove loops.
Apply exact inference algorithm to the resulting BNs.

• But there are tradeoffs:

How many times must we run the exact inference
algorithm?
This number grows exponentially with the size of the
cutset.

• Can we optimize this tradeoff?

What is the minimal cutset for maximally efficient
inference?
There is no efficient algorithm to compute this! 151 / 152

That’s All Folks!

152 / 152

