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Approximate inference

- Problem (for loopy BNs)

Given a set E of evidence nodes, and a set Q of query
nodes, how to estimate the posterior distribution P(Q|E)?

diseases

@ symptoms

- Stochastic sampling methods

LAST CLASS
1. Rejection sampling — slow
2. Likelihood weighting — faster

TODAY
3. Markov chain Monte Carlo (MCMC) — fastest 10793



Likelihood weighting

1/93



Likelihood weighting

- Make N forward passes through the BN:

12/93



Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

13/93



Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

- For single query and evidence nodes:

14 /93



Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

- For single query and evidence nodes:

P(Q=qglE=e) ~
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Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

- For single query and evidence nodes:
likelihood weight
—
>iL, g, ) P(E=elpa;(E))
> P(E=elpay(E))
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Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

- For single query and evidence nodes:
likelihood weight
—
N . f— .
P(QZC”E:E’) ~ Z/':1 II(VQ7CI/) ‘D(E €|pa,(E))
>_i—1 P(E=é|pa;(E))

- For multiple query and evidence nodes:

17/ 93



Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

- For single query and evidence nodes:
likelihood weight
—
N . f— .
P(QZC”E:E’) ~ Z/':1 II(VQ7CI/) ‘D(E €|pa,(E))
>_i—1 P(E=é|pa;(E))

- For multiple query and evidence nodes:

P(Q=q,0' = |E=e,E'=¢)

1%
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Likelihood weighting

- Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

- For single query and evidence nodes:
likelihood weight
——f
N . f— .
P(QZC”E:E’) ~ Z/':1 II(VQ7CI/) P(E e|pa,(E))
>_i—1 P(E=¢|pa;(E))

- For multiple query and evidence nodes:

P(Q=q,0'=q'|E=e,F'=¢) -

—  \ Ay
S 1(a,01) (9" q/) P(E=el|pay(E)) P(E' =€’ |pa;(E"))
S, P(E=elpay(E)) P(E'=¢'|pa;(E"))
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Example for likelihood weighting sampling

'

S i(g, a1) 19" a)P(E=elpai(E)) P(E' =€’ Ipay(E"))

>oiLy P(E=elpay(E)) P(E =€’ |pai(E"))

Problem: Estimate P(ap|c, d1) 0 @ G

Samples: g Q
NP S ")
Ao, D1, C1, 01 C_C \\C) B @Cd\\bo7
as, b07 C1, d1 ! ° ’t/ A B P(BIA)
Al PaA
Ao, b'la C'Ia d1 - C %\\QQ a 1(/5) - :))0 ;;Z
0 ay 1
. a, 4/5 a b, 1/3
Q.Estimate of P(ap|c,d1) a1 b:’ 2/3
using likelihood weight- B | C | P
. b, | ¢ 1/5 B | D | P(DIB)
Ing?
g (by | o | 45 by | dy | 3/4
b, Co 3/5 b, | d, 1/4
b, | c 2/5 b dg | 1/3
b, | d, 2/3
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Properties of likelihood weighting
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Properties of likelihood weighting

- It converges in the limit: /®\
N . _ _ .
W S P(E=elX=x)

@

- It's more efficient than rejection sampling:

No samples need to discarded.
Descendants of evidence nodes are conditioned on
evidence.

- But it can still be very slow:

@ o~ @ Thg \qurst Fase for l|\<ehhqod .
& weighting is when rare evidence is

descended from query nodes.
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Best and worst cases for likelihood weighting
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Best and worst cases for likelihood weighting

well suited

Left — rare evidence affects how query nodes are sampled.
Right — rare evidence is unlikely to occur with high probability.

ill suited
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What next?

To handle this case,
especially with rare
evidence, we need the
evidence nodes to
affect how other nodes
are sampled.
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What next?

To handle this case,
especially with rare
evidence, we need the
evidence nodes to
affect how other nodes
are sampled.

We need a way to sample
nodes in any order—not
only in a forward pass
when they are conditioned
on their parents.
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Markov blanket
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- Definition
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- Definition

The Markov blanket By of a node X consists of its parents,
children, and spouses (i.e., parents of children).
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/O\
> o1

O

- Definition

The Markov blanket By of a node X consists of its parents,
children, and spouses (i.e., parents of children).

- Theorem

The node X is conditionally independent of the nodes outside
its Markov blanket given the nodes inside its Markov blanket.
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Test your understanding

Let X be a node in a belief network.
Let By denote its Markov blanket (i.e., parents, children,
spouses). Let Y be any node such that Y & X U By.
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Test your understanding

Let X be a node in a belief network.
Let By denote its Markov blanket (i.e., parents, children,
spouses). Let Y be any node such that Y & X U By.

Q. Which of these is TRUE? ><
\>

A. The parents, children, and spouses of X are 2

~— non-overlapping sets of nodes.

B.\The parents, children, and spouses of X are
non-overlapping in a polytree.

C. P(X|Bx,Y) = P(X|Bx) is only guaranteed to be true in a
polytree.

D. All are true.ﬂC

E. None are true.

—
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Markov chain Monte Carlo




Approximate inference
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Approximate inference

Query nodes Q, Q'

Evidence nodes E, E/
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Approximate inference

Query nodes Q, Q'

Evidence nodes E, E/

How to estimate P(Q=q,Q'=q'|E=e,F'=¢€')?
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Monte Carlo methods are usually
traced to physicists at Los Alamos in
1940s!
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Monte Carlo methods are usually
traced to physicists at Los Alamos in
1940s!

- Stanistaw Ulam (inspired by
solitaire!) and Von Neumann
(rejection sampling).

- Interested in modeling the
probabilistic behavior of
collections of atomic particles.

- The term ‘Monte-Carlo’ was
coined at Los Alamos.
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MCMC - Gibbs Sampling

- Initialization
Fix evidence nodes to observed values e, e’.
Initialize non-evidence nodes to random values.

- Repeat N times
Pick a non-evidence node X at random.
Use Bayes rule to compute P(X|By).
Resample x ~ P(X|Bx).
Take a snapshot of all the nodes in the BN.

- Estimate
Count the snapshots N(g,q") < N with Q=g and Q'=q'".
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MCMC - Gibbs Sampling

- Initialization
Fix evidence nodes to observed values e, e’.
Initialize non-evidence nodes to random values.

- Repeat N times
Pick a non-evidence node X at random.
Use Bayes rule to compute P(X|By).
Resample x ~ P(X|Bx).
Take a snapshot of all the nodes in the BN.

- Estimate
Count the snapshots N(g,q") < N with Q=g and Q'=q'".

N(q,q’)

P(Q=q,Q'=q'|E=¢,F'=¢') ~ N
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Gibbs Sampling Example

Estimate PR=1|S=1,G=1)

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate PR=1|S=1,G=1)
- Initialization
- Set evidence: s, g4 <

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate PR=1|S=1,G=1)
- Initialization
- Set evidence: s, g4 <

- Randomly set non-evidence
variables: ¢, ry

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate PR=1|S=1,G=1)
- Initialization

- Set evidence: sy, g1 C
- Randomly set non-evidence :
variables: ¢, ry

- Repeat N times:

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G6=1)

- Initialization
- Set evidence: sy, g4
- Randomly set non-evidence C
variables: ¢, ry ;

- Repeat N times:

- Pick variable to update from
{R, C} uniformly at random: R

ST R | PGISR
TT 0.99
T|F 0.90
FloT
FlF

0.90
0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Compute P(R|cq,S1,G1) USING
Bayes rule

P(GIS,R)

S R

T T 0.99
T F 0.90
F T 0.90
F F 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Sample R from P(R|c1, S1,91): o
Take a snapshot

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Pick variable to update from
{R, C} uniformly at random: C
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Compute P(C|ro, S1) using Bayes
rule

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Sample C from P(Clrg,51): Co
Take a snapshot

P(GIS,R)

S R

T T 0.99
T F 0.90
F T 0.90
F F 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
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variables: ¢, rq
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{R, C} uniformly at random: C
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Compute P(C|ro, S1) using Bayes
rule

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: sy, g4

- Randomly set non-evidence
variables: ¢, rq

- Repeat N times:

- Sample C from P(Clrg,$1): €
Take a snapshot

P(GIS,R)

S R

T T 0.99
T F 0.90
F T 0.90
F F 0.01
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Gibbs Sampling Example

Estimate P(R=1|S=1,G=1)
- Initialization
- Set evidence: s, g4 <

- Randomly set non-evidence ;
variables: ¢, ry

- Repeat N times:

- Count the snapshots with ry: Ny,

ST R | PGISR
TT 0.99
T|F 0.90
FloT 0.90
FlF 0.01

76/ 93



Gibbs Sampling Example

Estimate PR=1|S=1,G=1)
- Initialization

- Set evidence: sy, g1 C
- Randomly set non-evidence :
variables: ¢, ry

- Repeat N times:

- Count the snapshots with ry: Ny,

P(GIS,R)

S R
T T 0.99
PR=1S=16=1) ~ -1 TE| o
Flr 001
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Gibbs Sampling

p(X=1)=0¢

@/70@ PL=t=0) =)

Q. (A) True or (B) False
Gibbs MCMC could get stuck if the relationship between
two random variables is deterministic.

(;@:f- g > p(uleEd
= o
o Qi ¢ %\2\5 ?A/KL o
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of the BN.
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Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducibile
and aperiodic) Markov chain over the non-evidence nodes
of the BN.

2. The stationary distribution of this Markov chain is equal to
the BN’s posterior distribution over its non-evidence
nodes.

3. Theoretical guarantees for mixing time, in practice we use
burn in time.

4. The estimates from MCMC converge in the limit:

/
||m N(Q7Q) N P(QZC],Q’ZCHEZ@,E’ZQ’)
N—oo N
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MCMC versus likelihood weighting (LW)
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- How they sample

P(X|pa(X))

samples non-evidence nodes from
P(X[Bx)

MCMC
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samples non-evidence nodes from
MCMC
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MCMC versus likelihood weighting (LW)

- How they sample

P(X|pa(X))

MCMC P(X|Bx)

} samples non-evidence nodes from {
- Cost per sample

LW can read off P(X|pa(X)) from each CPT.
MCMC must compute P(X|Bx) before each sample.

- Convergence

L\W is slow for rare evidence in leaf nodes.
MCMC can be much faster in this situation.




That's all folks!
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