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Agenda

Review

Markov chain Monte Carlo
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Review



Approximate inference

• Problem (for loopy BNs)

Given a set E of evidence nodes, and a set Q of query
nodes, how to estimate the posterior distribution P(Q|E)?

• Stochastic sampling methods

LAST CLASS
1. Rejection sampling — slow
2. Likelihood weighting — faster

TODAY
3. Markov chain Monte Carlo (MCMC) — fastest
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Likelihood weighting

• Make N forward passes through the BN:

Sample non-evidence nodes based on values of parents.
Fix evidence nodes to desired values.

• For single query and evidence nodes:

P(Q=q|E=e) ≈
∑N

i=1 I(q,qi)
likelihood weight︷ ︸︸ ︷
P(E=e|pai(E))∑N

i=1 P(E=e|pai(E))

• For multiple query and evidence nodes:

P(Q=q,Q′=q′|E=e, E′=e′)

≈
∑N

i=1 I(q,qi) I(q′,q′i)P(E=e|pai(E))P(E′=e′|pai(E′))∑N
i=1 P(E=e|pai(E))P(E′=e′|pai(E′))
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Example for likelihood weighting sampling

Problem: Estimate P(a0|c1,d1)
Samples:
a0,b1, c1,d1
a1,b0, c1,d1
a0,b1, c1,d1

Q.Estimate of P(a0|c1,d1)
using likelihood weight-
ing?
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Properties of likelihood weighting

X

Y E

Q

• It converges in the limit:

lim
N→∞

∑N
i=1 I(q,qi)P(E=e|X=xi)∑N

i=1 P(E=e|X=xi)
= P(Q=q|E=e)

• It’s more efficient than rejection sampling:

No samples need to discarded.
Descendants of evidence nodes are conditioned on
evidence.

• But it can still be very slow:

The worst case for likelihood
weighting is when rare evidence is
descended from query nodes.
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Best and worst cases for likelihood weighting

Left — rare evidence affects how query nodes are sampled.
Right — rare evidence is unlikely to occur with high probability.
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What next?

Q2Q1 Qn

. . .

. . .

E1 E2 Ek
. . .

well suited

E2E1 Ek

. . .

. . .

Q1 Q2 Qn
. . .

ill suited

To handle this case,
especially with rare
evidence, we need the
evidence nodes to
affect how other nodes
are sampled.

We need a way to sample
nodes in any order—not
only in a forward pass
when they are conditioned
on their parents.
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Markov blanket

• Definition

The Markov blanket BX of a node X consists of its parents,
children, and spouses (i.e., parents of children).

• Theorem

The node X is conditionally independent of the nodes outside
its Markov blanket given the nodes inside its Markov blanket.
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Test your understanding

Let X be a node in a belief network.
Let BX denote its Markov blanket (i.e., parents, children,
spouses). Let Y be any node such that Y ̸∈ X ∪ BX.

Q. Which of these is TRUE?

A. The parents, children, and spouses of X are
non-overlapping sets of nodes.

B. The parents, children, and spouses of X are
non-overlapping in a polytree.

C. P(X|BX, Y) = P(X|BX) is only guaranteed to be true in a
polytree.

D. All are true.

E. None are true.
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Markov chain Monte Carlo



Approximate inference

Query nodes Q,Q′

Evidence nodes E, E′

How to estimate P(Q=q,Q′=q′|E=e, E′=e′)?
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Fun Fact!

Monte Carlo methods are usually
traced to physicists at Los Alamos in
1940s!

• Stanisław Ulam (inspired by
solitaire!) and Von Neumann
(rejection sampling).

• Interested in modeling the
probabilistic behavior of
collections of atomic particles.

• The term ‘Monte-Carlo’ was
coined at Los Alamos.
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MCMC - Gibbs Sampling

• Initialization
Fix evidence nodes to observed values e, e′.
Initialize non-evidence nodes to random values.

• Repeat N times
Pick a non-evidence node X at random.
Use Bayes rule to compute P(X|BX).
Resample x ∼ P(X|BX).
Take a snapshot of all the nodes in the BN.

• Estimate
Count the snapshots N(q,q′) ≤ N with Q=q and Q′=q′.

P(Q=q,Q′=q′|E=e, E′=e′) ≈ N(q,q′)
N
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Gibbs Sampling Example

Estimate P(R = 1 | S = 1,G = 1)

• Initialization

• Set evidence: s1, g1
• Randomly set non-evidence
variables: c1, r1

• Repeat N times:
•

• Count the snapshots with r1: Nr1

P(R = 1|S = 1,G = 1) ≈ Nr1
N

C

RS

G

P(C)
0.5

C P(R|C)
T 0.8
F 0.2

C P(S|C)
0 0.1
1 0.5

S R P(G|S,R)
T T 0.99
T F 0.90
F T 0.90
F F 0.01
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Gibbs Sampling

Q. (A) True or (B) False
Gibbs MCMC could get stuck if the relationship between
two random variables is deterministic.
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Properties of MCMC

Under reasonable conditions...

1. This sampling procedure defines an ergodic (irreducibile
and aperiodic) Markov chain over the non-evidence nodes
of the BN.

2. The stationary distribution of this Markov chain is equal to
the BN’s posterior distribution over its non-evidence
nodes.

3. Theoretical guarantees for mixing time, in practice we use
burn in time.

4. The estimates from MCMC converge in the limit:

lim
N→∞

N(q,q′)
N → P(Q=q,Q′=q′|E=e, E′=e′)
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MCMC versus likelihood weighting (LW)

• How they sample

LW
MCMC

}
samples non-evidence nodes from

{
P(X|pa(X))
P(X|BX)

• Cost per sample

LW can read off P(X|pa(X)) from each CPT.
MCMC must compute P(X|BX) before each sample.

• Convergence

LW is slow for rare evidence in leaf nodes.
MCMC can be much faster in this situation.
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That’s all folks!
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