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Review



Learning in BNs with discrete nodes

• ML estimation for complete data:

PML(Xi=x|pai=⇡) =
count(Xi=x, pai=⇡)P
x0 count(Xi=x0, pai=⇡)

• For nodes with parents:

PML(Xi=x|pai=⇡) =
count(Xi=x, pai=⇡)

count(pai=⇡)

• For root nodes:

PML(Xi=x) =
count(Xi=x)

T
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Markov models for statistical language processing

• n-gram models of word sequences:
P(w1,w2, . . . ,wL) =

Y

`

P(w`|w`�(n�1, . . . ,w`�1)| {z }
previous words

)

• As belief networks:

n = 1
unigram

n = 2
bigram

n = 3
trigram

w1 w2 w3 wL-1
. . . wL

w1 w2 w3 wL-1
. . . wL

w1 w2 w3 wL-1
. . . wL
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Naive Bayes model for document classification

• Random variables
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dull boy. 
All work and no play makes Jack a dullboy..
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.
All work and no play makes Jack a dull boy.

sports [0 1 1 0 0 … 0 1 0] Y 2 {1, 2, . . . ,m} topic of document
Xi 2 {0, 1} ith word appears?

• Belief network

X2

Y

X1 Xn. . .

 P(Y=y)   

 P(Xi=1|Y=y)   

• Naive Bayes assumption

P(X1, . . . , Xn|Y) =
nY

i=1
P(Xi|Y)
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Incomplete Data



Learning from incomplete data with tabular CPTs

ASSUMPTIONS

1. The DAG is fixed (and known) over a finite set of
discrete random variables {X1, X2, . . . , Xn}.

2. CPTs enumerate P(Xi=x|pa(Xi) = ⇡) as lookup tables;
each must be estimated for all values of x and ⇡.

3. The data is IID, but only consists of T partially complete
instantiations of the nodes in the BN.
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Toy example

• Fixed DAG over binary random variables

X1 2 {0, 1}
X2 2 {0, 1}
X3 2 {0, 1}
X4 2 {0, 1}

• Incomplete data set

example X1 X2 X3 X4
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
: : : : :
T ? 1 1 0

How to choose the
CPTs so that the BN
maximizes the probability
of this data set?
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A more interesting example ...

How to build a movie recommendation system?

• Collect a data set of movie ratings:
2

6666666664

+ � + � ? ? +

� ? ? + + ? ?

+ + + + + + +

...
...

...
...

...
...

...
� � � � � ? �
? ? + ? ? ? �

3

7777777775

+ liked
� disliked
? not seen

(user-item matrix)

• Build a model of user profiles and fill in the missing
ratings.
But what model to build?
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Naive Bayes model with incomplete data

• Movie recommender system

Z 2 {1, 2, . . . , k} type of movie-goer
Ri 2 {0, 1} rating for ith movie

• Incomplete data set

student Z R1 R2 R3 R4 · · ·
1 ? 0 1 1 ? · · ·
2 ? 1 ? 0 1 · · ·
3 ? 0 0 ? 1 · · ·
: : : : : : :
T ? ? 1 0 ? · · ·

Note that the
variable Z is
never observed.
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Learning from incomplete data

• Notation

Ht = set of hidden (latent) variables for tth example
Vt = set of visible (observed) variables for tth example

• Illustration

example X1 X2 X3 X4
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
: : : : :

H1 = {X2} V1 = {X1, X3, X4}
H2 = {X3} V2 = {X1, X2, X4}
H3 = {X1, X2, X3} V3 = {X4}
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Computing the log-likelihood with incomplete data

L = log P(data)

= log
TY

t=1
P (Vt=vt) data is IID

=
TX

t=1
log P (Vt=vt) log ab = log a+ log b

Q. What should we do next? (to express the full joint)

A. Use product rule

B. Express P (Vt=vt) using conditional independence

C. Use marginalization

D. Use Bayes Rule

E. None of them
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Complete versus incomplete data

• Complete data
L =

X

i,⇡,x
count(Xi=x,pai=⇡) log P(Xi=x|pai=⇡)

The CPTs at different nodes are decoupled!
We can compute ML estimates in closed form.

• Incomplete data
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{Ht=h,Vt=vt}

The CPTs are potentially all coupled.
How to proceed?
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Expectation-Maximization Algorithm



EM algorithm in a nutshell

• If only the data weren’t incomplete ...

student Z R1 R2 · · ·
1 ? 0 1 · · ·
2 ? 1 ? · · ·
3 ? 0 0 · · ·
: : : : :
T ? ? ? · · ·

If the data were complete, we
could easily estimate the CPTs.
What can we do instead?

• Here’s a crazy idea ...

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
Re-estimate CPTs from the newly completed data.
Iterate the last two steps until convergence?

Amazingly, this is how EM works (more or less) ...
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EM algorithm — overview

• Initialize the CPTs

Assign random probabilities to all P(Xi=x|pai=⇡).

Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.

• Iterate until convergence

[E-Step] Compute posterior probabilities P(Ht=h|Vt=vt).

[M-Step] Update CPTs based on these probabilities.
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vt=vt)
At other nodes: P(Xi=x, pai=⇡|Vt=vt)

These probabilities must be computed over a quadruple loop:

examples Vt t 2 {1, 2, . . . , T}
nodes Xi i 2 {1, 2, . . . ,n}

values of Xi=x e.g., x 2 {0, 1}
values of pai=⇡ e.g., ⇡ 2 {0, 1}k

The # of computations grows linearly in the size of the BN,
and also in the amount of data (as expected).
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:

• At root nodes

P(Xi=x)  � 1
T

TX

t=1
P(Xi=x|Vt=vt)

• At nodes with parents

P(Xi=x|pai=⇡)  �
P

t=1 P(Xi=x, pai=⇡|Vt=vt)PT
t=1 P(pai=⇡|Vt=vt)

Note that these are updates ( �), not equalities (=).
The right hand sides depend on the current CPTs.

Formulas are great, but what about intuition?
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Analogy to ML for complete data

• Indicator functions

I(x, x0) =

(
1 if x=x0
0 otherwise

• Counts
count(Xi=x) =

TX

t=1
I(xit, x)

count(pai=⇡) =
TX

t=1
I(pait,⇡)

count(Xi=x, pai=⇡) =
TX

t=1
I(xit, x) I(pait,⇡)
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ML estimates for complete data

• At root nodes

PML(Xi=x) =
count(Xi=x)

T

PML(Xi=x) =
1
T

TX

t=1
I(xit, x)

• At nodes with parents

PML(Xi=x|pai=⇡) =
count(Xi=x, pai=⇡)

count(pai=⇡)

PML(Xi=x|pai=⇡) =

PT
t=1 I(xit, x) I(pait,⇡)PT

t=1 I(pait,⇡)
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Intuition for EM updates — by analogy

• At root nodes

PML(Xi=x) =
1
T
X

t
I(xit, x) ML for complete data

P(Xi=x)  1
T
X

t
P(Xi=x|Vt=vt) EM update

• At nodes with parents

PML(Xi=x|pai=⇡) =

P
t I(xit, x) I(pait,⇡)P

t I(pait,⇡)
ML for complete data

P(Xi=x|pai=⇡)  
P

t P(Xi=x, pai=⇡|Vt=vt)P
t P(pai=⇡|Vt=vt)

EM update

• Special case

Consider a CPT whose nodes are fully observed.
EM updates in this case reduce to ML estimates for complete data.
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EM updates

P(Xi=x)  � 1
T
X

t
P(Xi=x|Vt=vt)

root
nodes

P(Xi=x|pai=⇡)  �
P

t P(Xi=x, pai=⇡|Vt=vt)P
t P(pai=⇡|Vt=vt)

nodes
with

parents

Intuitively:

When the data is complete, we estimate the CPTs from observed counts.

When the data is incomplete, we re-estimate the CPTs from expected counts.

These expected counts are computed from the posterior distributions
P(h|vt).
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Key properties of EM

• No learning rate

The updates do not require the tuning of a learning
rate (⌘ > 0), as in most gradient-based methods.

• Monotonic convergence

The updated CPTs from EM always increase the
incomplete-data log-likelihood L =

P
t log P(Vt=vt).
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Check In

Q. How much of EM did you understand?

A. (Nearly) All of it

B. Some of it, but I have some doubts

C. Maybe a little, but I’m pretty confused

D. Almost none of it; I’m totally lost
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Log-likelihood

• Incomplete data set
t A B C
1 a1 ? c1
2 a2 ? c2
...

...
...

...
T aT ? cT

How to choose the CPTs
to maximize the log-likelihood
of this (incomplete) data?

• Log-likelihood

L =
X

t
log P(at, ct)

=
X

t
log

X

b
P(at, b, ct) marginalization

=
X

t
log

X

b
P(at) P(b|at) P(ct|at, b) product rule

=
X

t
log

X

b
P(at) P(b|at) P(ct|b) conditional independence
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Example

BA C Suppose that A and C are
observed and B is hidden.

Q. Which parameters of this network can you estimate directly
from the data (in one step—no iteration required)?

A. P(A)

B. P(B|A)

C. P(C|B)

D. Both A. and C.

E. None of them
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EM update for P(A)

• General form

P(Xi=x)  �
1
T
X

t
P(Xi=x|Vt=vt) root node

• Update for this CPT

P(A=a)  � 1
T
X

t
P(A=a|A=at, C=ct)

Simplify :

P(A=a)  � 1
T
X

t
I(a, at) =

1
T count(A=a)

The update reduces to the ML estimate for complete data—as it must,
because A is observed and has no unobserved parents.
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EM update for P(B|A)

• General form

P(Xi=x|pai=⇡)  �
P

t P(Xi=x, pai=⇡|Vt=vt)P
t P(pai=⇡|Vt=vt)

• Update for this CPT

P(B=b|A=a)  �
P

t P(B=b,A=a|A=at, C=ct)P
t P(A=a|A=at, C=ct)

Simplify :

P(B=b|A=a)  �
P

t I(a,at)P(B=b|A=at, C=ct)P
t I(a,at)
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EM update for P(B|A)

BA C

• General form
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t I(a,at)
computed from Bayes rulez }| {

P(B=b|A=at, C=ct)P
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Example

BA C

Suppose that A and C are
observed and B is hidden.

• Inference

P(B=b|A=a, C=c) =
P(C=c|B=b, A=a) P(B=b|A=a)

P(C=c|A=a) BR

=
P(C=c|B=b) P(B=b|A=a)

P(C=c|A=a) CI

=
P(C=c|B=b) P(B=b|A=a)P
b0 P(C=c|B=b0) P(B=b0|A=a)

normalized

This is the only non-trivial posterior probability that
we’ll need for the EM updates in this example.
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EM update for P(C|B)

• General form

P(Xi=x|pai=⇡)  �
P

t P(Xi=x, pai=⇡|Vt=vt)P
t P(pai=⇡|Vt=vt)

• Update for this CPT

P(C=c|B=b)  �
P

t P(C=c,B=b|A=at, C=ct)P
t P(B=b|A=at, C=ct)

Simplify :

P(C=c|B=b)  �
P

t I(c, ct)P(B=b|A=at, C=ct)P
t P(B=b|A=at, C=ct)
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t P(pai=⇡|Vt=vt)

• Update for this CPT

P(C=c|B=b)  �
P

t P(C=c,B=b|A=at, C=ct)P
t P(B=b|A=at, C=ct)

Simplify :

P(C=c|B=b)  �
P

t I(c, ct)P(B=b|A=at, C=ct)P
t P(B=b|A=at, C=ct)
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Summary of EM algorithm

• E-step (Inference)

P(b|at, ct) =
P(ct|b) P(b|at)P
b0 P(ct|b0) P(b0|at)

• M-step (Learning)

P(a) =
1
T count(A=a)

P(b|a)  �
P

t I(a, at) P(b|at, ct)
P

t I(a, at)

P(c|b)  �
P

t I(c, ct) P(b|at, ct)P
t P(b|at, ct)

• Convergence

There are no learning rates to tune.
Each update increases the incomplete data log-likelihood:

L =
X

t
log

X

b
P(at) P(b|at) P(ct|b)

189 / 200



Summary of EM algorithm

• E-step (Inference)

P(b|at, ct) =
P(ct|b) P(b|at)P
b0 P(ct|b0) P(b0|at)

• M-step (Learning)

P(a) =
1
T count(A=a)

P(b|a)  �
P

t I(a, at) P(b|at, ct)
P

t I(a, at)

P(c|b)  �
P

t I(c, ct) P(b|at, ct)P
t P(b|at, ct)

• Convergence

There are no learning rates to tune.
Each update increases the incomplete data log-likelihood:

L =
X

t
log

X

b
P(at) P(b|at) P(ct|b)

190 / 200



Summary of EM algorithm
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• E-step (Inference)

P(b|at, ct) =
P(ct|b) P(b|at)P
b0 P(ct|b0) P(b0|at)

BA C

• M-step (Learning)

P(a) =
1
T count(A=a)

P(b|a)  �
P

t I(a, at) P(b|at, ct)
P

t I(a, at)

P(c|b)  �
P

t I(c, ct) P(b|at, ct)P
t P(b|at, ct)

• Convergence

There are no learning rates to tune.
Each update increases the incomplete data log-likelihood:

L =
X

t
log

X

b
P(at) P(b|at) P(ct|b)

192 / 200



Summary of EM algorithm
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Summary of EM algorithm
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Summary of EM algorithm
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Summary of EM algorithm
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Summary of EM algorithm

• E-step (Inference)

P(b|at, ct) =
P(ct|b) P(b|at)P
b0 P(ct|b0) P(b0|at)

BA C

• M-step (Learning)

P(a) =
1
T count(A=a)

P(b|a)  �
P

t I(a, at) P(b|at, ct)
P

t I(a, at)

P(c|b)  �
P

t I(c, ct) P(b|at, ct)P
t P(b|at, ct)

• Convergence

There are no learning rates to tune.
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Summary of EM algorithm

• E-step (Inference)
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Check In

Q. How much of EM did you understand?

A. (Nearly) All of it

B. Some of it, but I have some doubts

C. Maybe a little, but I’m pretty confused

D. Almost none of it; I’m totally lost

199 / 200

24.- 15

45%.
40

27%35



That’s all folks!
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