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Review



Learning in BNs with discrete nodes

- ML estimation for complete data:

count(X;=x, pa;=m)
>, count(X;=x’, pa;=m)

PuL(Xi=xX|paj=m) =

- For nodes with parents:

count(X;=x,pa;=m
PML(X,':X‘pa,':ﬂ') = ( ’ pai )

count(pa; =)

- For root nodes:

count(X;=x)

PML(X,':X) = T
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Markov models for statistical language processing

- n-gram models of word sequences:

P(wi,wa,...,w) = H P(WelWe—y—1,. -, We—1))
]

uevious words )
- As belief networks: /
n="1 @ @ @ @ @

unigram / .
- @@ b
bigram

trigram 5200



Naive Bayes model for document classification

- Random variables

Ye{1,2,...,m} topicof document
X; € {0,1} ith word appears?

— [01100..010]

- Belief network

@ ®

- Naive Bayes assumption

® [Fei]

n
P(X17 s 7Xn|y) = H'D(XI|Y)
i=1
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Incomplete Data



Learning from incomplete data with tabular CPTs

8 /200



Learning from incomplete data with tabular CPTs

| ASSUMPTIONS |
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Learning from incomplete data with tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.
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Learning from incomplete data with tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.

2. CPTs enumerate P(X;=x|pa(X;) = m) as lookup tables;
each must be estimated for all values of x and .
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Learning from incomplete data with tabular CPTs

| ASSUMPTIONS |

1. The DAG is fixed (and known) over a finite set of
discrete random variables {Xi,Xa,..., Xy }.

2. CPTs enumerate P(X;=x|pa(X;) = m) as lookup tables;
each must be estimated for all values of x and .

3. The data is IID, but only consists of T partially. complete
L

instantiations of the nodes in the BN.
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Toy example
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Toy example

- Fixed DAG over binary random variables
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Toy example

- Fixed DAG over binary random variables

Xi e {0,1}
X, € {0,1}
X3 € {0,1}
X, € {0,1}
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Toy example

- Fixed DAG over binary random variables

Xi e {0,1}
X, € {0,1}
X3 € {0,1}
X, € {0,1}

- Incomplete data set
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Toy example

- Fixed DAG over binary random variables

Xi e {0,1}
X, € {0,1}
X3 € {0,1}
X, € {0,1}

- Incomplete data set

example | X1 | Xo | X3 | Xs
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
T ? 1 1 0
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Toy example

- Fixed DAG over binary random variables

- Incomplete data set

example | X1 | Xo | X3 | Xs
1 1 ? 0 1
2 0 1 ? 0
3 ? ? ? 1
T ? 1 1 0

X1 € {0,1}
X, € {0,1}
X3 € {0,1}
X, € {0,1}

How to choose the
CPTs so that the BN
maximizes the probability

of this data set?
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A more interesting example ...
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A more interesting example ...
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A more interesting example ...

How to build a movie recommendation system?‘
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A more interesting example ...

How to build a movie recommendation system?‘

- Collect a data set of movie ratings:
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A more interesting example ...

How to build a movie recommendation system?‘

- Collect a data set of movie ratings:

+

+

?
+

+
?

+

+
+

?
?
+

+
?

+

+

?

liked
disliked
not seen

(user-item matrix)
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A more interesting example ...

PARASITE

How to build a movie recommendation system?‘

- Collect a data set of movie ratings:

+ - o+ = 7 2
- 7 4 4 7
+

+
?

+

+

?

liked
disliked
not seen

(user-item matrix)

- Build a model of user profiles and fill in the missing

ratings.

But what model to build?
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Naive Bayes model with incomplete data
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Naive Bayes model with incomplete data
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Naive Bayes model with incomplete data
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OO

- Movie recommender system
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Naive Bayes model with incomplete data

- Movie recommender system

Z € {1,2,...,kR} type of movie-goer
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Naive Bayes model with incomplete data

- Movie recommender system

Z € {1,2,...,kR} type of movie-goer
R ¢ {0,1} rating for i*" movie
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Naive Bayes model with incomplete data

- Movie recommender system

Z € {1,2,...,kR} type of movie-goer
R ¢ {0,1} rating for i*" movie

- Incomplete data set
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OO

- Movie recommender system

Z € {1,2,...,kR} type of movie-goer
R ¢ {0,1} rating for i*" movie

- Incomplete data set

student V4 Ry R, R3 Ry
1 ? 1 1 ?
2 ? ?
3 ? 0 ?
T ? ? 1 O ?
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- \ f“
HE L
OO

- Movie recommender system

Z € {1,2,...,kR} type of movie-goer
R ¢ {0,1} rating for i*" movie

- Incomplete data set

student V4 Ry R, R3 Ry
1 ? 111 2 [
5 7 T o T 11 No’Fe that t.he
3 ? ol 2111 - variable Z is
: never observed.
T ? 20110 | 7
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Learning from incomplete data
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Learning from incomplete data

- Notation
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Learning from incomplete data

- Notation

H: = setof hidden (latent) variables for t'" example
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Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example
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Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example

- Illustration
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Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example

- Illustration
@ /®
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Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example

- Illustration
/Q(D\ example | X; | Xo | X3 | X4

1 1 ? 0 1

/® 2 ol1]z2]o

3 ? ? ? 1

&) : ———1—
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Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example

- Illustration

example X X5 X3 Xa
1 1 ? 1
2 0 1 ? 0
3 ? ? ? 1
V1 = {X1 ’ X3 ’ Xlo}
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Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example
2 &S
— —
- Illustration @ @ ,
/Q(D\ example | X; | X; xé;xf— S
1 1201
& /® 2 ol1]z2]o
@ 3 22211
Hq {6} Vi = {X, X, X}
H G} Voo = X0, X0, Xe}

42 /200



Learning from incomplete data

- Notation
H: = setof hidden (latent) variables for t'" example
Vi = setofvisible (observed) variables for tth example

- Illustration

/Q(D\ example | Xi | X2 | X3 | Xu
1 1 ‘ 0 1
® /® 2 0 L_? O] o
@ 3 (O 6[6] 1
Hi = {X} Vi = {X, X3, X}
Hy, = {X} Vo = {X, X0, X}
H3 = {X\XX} V3 - {XA}
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Computing the log-likelihood with incomplete data
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Computing the log-likelihood with incomplete data

L = logP(data)
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Computing the log-likelihood with incomplete data

L = logP(data)

T

= log [T P(ve=n)

t=1
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Computing the log-likelihood with incomplete data

L = logP(data)

T

= log [T P(ve=n)

t=1

.
= ZlogP(Vt:vt) ’Iogabzloga—i—logb
t=1
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Computing the log-likelihood with incomplete data

L = logP(data)

T

= log [T P(ve=n)

t=1

= ZlogP Vi=v) ’Iogabzloga—f—logb‘
X He

Q. What should we do next? (to express the full joint)

A. Use product rule

B. Express P (Vi=v;) using conditional independence

Cf Use marginalization >

D. Use Bayes Rule

E. None of them
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Computing the log-likelihood with incomplete data

L = logP(data)

)
= log [T P(ve=n)

t=1

;
= ZlogP(Vt:Vt) ’Iogabzloga+|ogb‘
t=1

;
= Zlogz P(Hi=h,Vi=v) ’marginalization‘
t=1 h
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Computing the log-likelihood with incomplete data

L = logP(data)
T
= log [[ P(Vi=w) data is 11D
t=1
;
= ZlogP(Vt:Vt) ’Iogabzloga+|ogb‘
t=1

;
= Zlogz P(Hi=h,Vi=v) ’marginalization‘
t=1 h

T

= Z |ng P(X]ZXW,XZZXQ,...,XHZXH)

t=1 h

joint

{Ht=hVi=vi}
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Computing the log-likelihood with incomplete data

L = logP(data)

)
= log [T P(ve=n)

t=1

;
= ZlogP(Vt:Vt) ’Iogabzloga+|ogb‘
t=1

;
= Zlogz P(Hi=h,Vi=v) ’marginalization‘
t=1 h

;

= Z lOgZ P(X1=x1,Xs=X2, ..., Xn=Xn)
=1 h
T

n
= > log)  [] PXi=xilpaj=m)
h =1

joint

{He=h,Vi=vt}
product rule
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Computing the log-likelihood with data

L = logP(data)

)
= log [T P(ve=n)

t=1

;
= ZlogP(Vt:Vt) ’Iogabzloga+|ogb‘
t=1

.
= Z log > P(Hi=h,Vi=v;) ’ marginalization ‘
t=1 h

T

= Z |OgZP(X1:X1,X2:X2,...,Xn:Xn)

t=1

joint

{He=h,Vi=v¢}
product rule
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Complete versus incomplete data
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Complete versus incomplete data

- Complete data
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Complete versus incomplete data

- Complete data
L =) count(Xj=x, pa;=) log P(X;=x|pa;=)

I,70,X
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Complete versus incomplete data

- Complete data
L =) count(Xj=x, pa;=) log P(X;=x|pa;=)

I,70,X

The CPTs at different nodes are decoupled!
We can compute ML estimates in closed form.
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Complete versus incomplete data

- Complete data
L =) count(Xj=x, pa;=) log P(X;=x|pa;=)

I,70,X
The CPTs at different nodes are decoupled!

We can compute ML estimates in closed form.

- Incomplete data
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Complete versus incomplete data

- Complete data
= ) count(X;=x, pa;=m)log P(X;=x|pa; =)

I,70,X

The CPTs at different nodes are decoupled!
We can compute ML estimates in closed form.

Incomplete data

Z IogZ H P(Xj=x;|pa;=;)

;

{Ht=h,Ve=v;}
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Complete versus incomplete data

- Complete data
= ) count(X;=x, pa;=m)log P(X;=x|pa; =)

I,70,X

The CPTs at different nodes are decoupled!
We can compute ML estimates in closed form.

. Incomplete data

Z IogZ H P(Xj=x;|pa;=;)

\ {H[:h,\/[:vt}

The CPTs are potentially all coupled.
How to proceed?
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Expectation-Maximization Algorithm




EM algorithm in a nutshell
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student z Rq Ry
! ’ (1) Ll If the data were complete, we
3 oo couldeasily estimate the CPTs.
T 7 71 -] Whatcan we do instead?
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student z Rq Ry
! ’ (1) Ll If the data were complete, we
3 oo couldeasily estimate the CPTs.
T 7 71 -] Whatcan we do instead?

- Here'’s a crazy idea ...
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student z Rq Ry
! ’ (1) Ll If the data were complete, we
3 oo couldeasily estimate the CPTs.
T 7 71 -] Whatcan we do instead?

- Here'’s a crazy idea ...

Randomly initialize the CPTs with nonzero elements.
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student z Rq Ry
! ’ (1) Ll If the data were complete, we
3 oo couldeasily estimate the CPTs.
T 7 71 -] Whatcan we do instead?

- Here'’s a crazy idea ...

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student z Rq Ry
! ’ (1) Ll If the data were complete, we
3 oo couldeasily estimate the CPTs.
T 7 71 -] Whatcan we do instead?

- Here'’s a crazy idea ...

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
Re-estimate CPTs from the newly completed data.
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student z Ry Ry
! I T N T If the data were complete, we
3 ~Tolo | couldeasily estimate the CPTs.
T 1771 Whatcan we do instead?

- Here'’s a crazy idea ...

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
Re-estimate CPTs from the newly completed data.
Iterate the last two steps until convergence?
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EM algorithm in a nutshell

- If only the data weren’t incomplete ...

student

Ry

1

1

2

vl v N

3

0

T

?

- Here'’s a crazy idea ...

If the data were complete, we
could easily estimate the CPTs.
What can we do instead?

Randomly initialize the CPTs with nonzero elements.
Use these CPTs to infer values for the missing data.
Re-estimate CPTs from the newly completed data.
Iterate the last two steps until convergence?

Amazingly, this is how EM works (more or less) ...
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EM algorithm — overview
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EM algorithm — overview

- Initialize the CPTs
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EM algorithm — overview

- Initialize the CPTs

Assign random probabilities to all P(X;=x|pa;=m).
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EM algorithm — overview

- Initialize the CPTs
Assign random probabilities to all P(X;=x|pa;=m).

Avoid zero probabilities (which cannot be unlearned).
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EM algorithm — overview

- Initialize the CPTs
Assign random probabilities to all P(X;=x|pa;=m).
Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.
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EM algorithm — overview

- Initialize the CPTs
Assign random probabilities to all P(X;=x|pa;=m).
Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.

- Iterate until convergence
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EM algorithm — overview

- Initialize the CPTs

Assign random probabilities to all P(X;=x|pa;=m).
Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.

- Iterate until convergence J

[E-Step] Compute posterior probabilities P(Hy=h|Vi=Vv;).
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EM algorithm — overview

- Initialize the CPTs

Assign random probabilities to all P(X;=x|pa;=m).
Avoid zero probabilities (which cannot be unlearned).

Different initializations may yield different results.

- Iterate until convergence J

[E-Step] Compute posterior probabilities P(Hy=h|Vi=Vv;).

[M-Step] Update CPTs based on these probabilities.
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E-step (Inference)
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities.
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes:
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: IP(X,:X\Vt:vt) )
At other nodes: =~
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xi=x,pa;=7|Vi=w)
-
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

85 /200



E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V; te{1,2,...,T}
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V; te{1,2,...,T}
nodes X; ie{1,2,...,n}
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V; te{1,2,...,T}
nodes X; re{1,2,....,n}
values of X;=x eg,x € {0,1}
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V;
nodes X;

values of X;=x
values of pa;=7

te{1,2,...,T}
ie{1,2,...,n}
eg,x € {0,1}
eg, m e {0,1}F
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V;
nodes X;

values of X;=x
values of pa;=7

te{1,2,...,T}
ie{1,2,...,n}
eg,x € {0,1}
eg, m e {0,1}F

The # of computations grows linearly in the size of the BN,
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E-step (Inference)

To fill in missing data, we must compute posterior
probabilities. But which probabilities, specifically, do we need?

At root nodes: P(Xi=x|Vi=w;)
At other nodes: P(Xj=x,pa;=7|Vi=w)

These probabilities must be computed over a quadruple loop:

examples V;
nodes X;

values of X;=x
values of pa;=7

te{1,2,...,T} "4
ie{1,2,...,n}
eg,x € {0,1}
eg, m e {0,1}F

The # of computations grows linearly in the size of the BN,
and also in the amount of data (as expected).
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M-step (Learning)
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:

- At root nodes
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:
- At root nodes
. Y} ?o‘-*\’

P(Xi=x) <+— Z Xi=x|Vi=
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:
- At root nodes

P(Xi=x) <+— Z Xi=x|Vi=

- At nodes with parents
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:
- At root nodes

P(Xi=x) <+— Z Xi=x|Vi=

- At nodes with parents

Zt:‘\ P(X,‘:X7 pa,-:7T|Vt:Vt)
S P(pay=m|Ve=v;)

P(Xi=x|pa;j=m) +—
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:

- At root nodes
1
P(Xi=x) @ 72 Pi=x|Vi=v)

- At nodes with parents

Zt:‘\ P(X,':X7pa,-:7r|Vt:vt)

P(Xi=X|pa;=m
Uo=xpa=m) S P(pay=m|Ve=v;)

Note that these are updates («—), not equalities (=).
The right hand sides depend on the current CPTs.
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M-step (Learning)

Next we use these posterior probabilities to update CPTs:
- At root nodes

.
:
Pi=X) +— 3 ; P(Xi =x|Vi=vt)

- At nodes with parents

Zt:‘\ P(X,‘:X7 pa,-:7T|Vt:Vt)
S P(pay=m|Ve=v;)

P(Xi=x|pa;j=m) +—

Note that these are updates («—), not equalities (=).
The right hand sides depend on the current CPTs.

Formulas are great, but what about intuition?
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Analogy to ML for complete data

100 /200



Analogy to ML for complete data

- Indicator functions

101/ 200



Analogy to ML for complete data

- Indicator functions

1 v/
(6, X) = { T ifx=x

0 otherwise
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Analogy to ML for complete data

- Indicator functions
1 ifx=x
I(x,x") = {

0 otherwise

- Counts
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Analogy to ML for complete data

- Indicator functions
1 ifx=x
I(x,x") = {

0 otherwise

- Counts

count(Xj=x) = E I(Xit, X)
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Analogy to ML for complete data

- Indicator functions
1 ifx=x
I(x,x") = {

0 otherwise

- Counts .
count(Xi=x) = > (X, )
t=1

.
count(pa;=7) = Z paje, T
t=1
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Analogy to ML for complete data

- Indicator functions

1 v/
(6, X) = { T ifx=x

0 otherwise

- Counts .
count(Xj=x) = Z/(X,‘t,X)
t=1
T
count(paj=m) = Z/(pa/t,ﬁ)
t=1
T
count(Xj=x,pa;,=7m) = Z/(me)l(paitaﬁ)
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ML estimates for complete data
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ML estimates for complete data

- At root nodes
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ML estimates for complete data

- At root nodes

count(X; =x)

PML(X/':X) = T
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ML estimates for complete data

- At root nodes

PML(X/':X) =

PuL(Xj=x) = ;-ET:I(XM:X)>
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ML estimates for complete data

- At root nodes

PML(X/':X) =

PuL(Xj=x) = %Z’(me)

- At nodes with parents
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ML estimates for complete data

- At root nodes

PML(X/':X) =

PuL(Xj=x) = %Z’(me)

- At nodes with parents

count(X;=x,pa; ==
P1\4L(X,-:X|pai:7r) = (, I )

count(pa;=m)
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ML estimates for complete data

- At root nodes

- At nodes with parents

P (X

P (X

:x)

:X)

PML(X,' :X|pai :7T)

Pyt (X

=X|pa,;=

)

count(X;=x, pa;=m)

count(pa;=m)

Zt 11(Xit, X) I(paje, )

Zt:1 I(paj, )
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Intuition for EM updates — by analogy
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Intuition for EM updates — by analogy

- At root nodes
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = %Z/(x,[,x) '\/ ’MLforcompletedata‘
t
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Intuition for EM updates — by analogy

- At root nodes

Puvn(Xi=x) = Z Xit, X ’ ML for complete data ‘

T
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

) IS

t
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- At nodes with parents
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

) IS

t

—l =

- At nodes with parents

Zt I(X/t7 X) /(pa/’tf 71‘)

PuL(Xi=x[paj=m) = ’ML for complete data

221 [(paye, 7)
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

o) o}l

t

—l =

- At nodes with parents

Zt I(X/t7 X) /(pa/’tf 71‘)

PuL(Xi=x[paj=m) = ’ ML for complete data ‘

221 [(paye, 7)

_ B > PXi=x,paj=m|Vi=w)
P(Xi=x|pa;=m) <« S Plom, = Vi=v)) EM update
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

o) o}l

t

—l =

- At nodes with parents

Zt I(X/t7 X) /(pa/’tf 71‘)

PuL(Xi=x[paj=m) = ’ ML for complete data ‘

2o I(pag, )
_ B > PXi=x,paj=m|Vi=w)
P(Xi=x|pa;=m) <« S Plom, = Vi=v)) EM update

- Special case
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

o) LYt

t

—l =

- At nodes with parents

Zt I(X/t7 X) /(pa/’tf 71‘)

PuL(Xi=x[paj=m) = ’ ML for complete data ‘

2o I(pag, )
B B > PXi=x,paj=m|Vi=w)
P(Xi=x|pa;=m) <« S Plom, = Vi=v)) EM update

- Special case

Consider a CPT whose nodes are fully observed.
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Intuition for EM updates — by analogy

- At root nodes

Pun(Xi=x) = Z Xit, X ’MLforcomplete data‘

o) LYt

t

—l =

- At nodes with parents

Zt I(X/t7 X) /(pa/’tf 71‘)

PuL(Xi=x[paj=m) = ’ ML for complete data ‘

2o I(pag, )
B B > PXi=x,paj=m|Vi=w)
P(Xi=x|pa;=m) <« S Plom, = Vi=v)) EM update

- Special case

Consider a CPT whose nodes are fully observed.
EM updates in this case reduce to ML estimates for complete data.
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EM updates

A
PO=x) — =3 P =xVe=v) root
T T 4 o nodes
J nodes

P(Xi=x,pa;=7|Vi=V, .
P(X,‘:X|pai:7r) —— Z[ ( L}( ;pa’/ |Vﬂ-| \t/) [) W|th
E a =T =
¢ AP e parents
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EM updates

1

root

P(Xi=x) <+—
(=) nodes

> P =x|Ve=w)
t

— |

nodes
P(Xi=x, pa,=7|Vi=V, .
P(Xi=x|pa;=m) <+— Z‘Z( ;( d,pa, |V7r| \t/) 2 with
a =T =
eTAP e parents

Intuitively:
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EM updates

1

root

P(Xi=x
=2 nodes

— |

> P(Xi=x|Vi=w)
t

nodes
P(X;=x, pa;=m|Vi=v ¢
P(X[:leai:ﬂ’) « Z[X:( L}( d7pa’/ |Vﬂ-| \f/) t) with
a =T =
AP e parents

Intuitively:

When the data is complete, we estimate the CPTs from observed counts.
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EM updates

1

root

P(Xi=x) <+—
(=) nodes

— |

> P =x|Ve=w)
t

nodes
P(X;=x, pa;=m|Vi=v ¢
P(X[:leai:ﬂ’) « Z[X:( L}( d7pa’/ |Vﬂ-| \f/) t) with
a =T =
AP e parents

Intuitively:
When the data is complete, we estimate the CPTs from observed counts.

When the data is incomplete, we re-estimate the CPTs from expected counts.
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EM updates

1 root
P(Xi=Xx) <+— 75 P(Xi=x|Vi=V,
(=) Tt(' [Vi=v) nodes
PO =x, pa,=7|Vi=) nodes
Pt =m) o ZEURBRAS) i
erAP == parents

Intuitively:
When the data is complete, we estimate the CPTs from observed counts.
When the data is incomplete, we re-estimate the CPTs from expected counts.

These expected counts are computed from the posterior distributions
P(h|vy).
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Key properties of EM

- No learning rate
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Key properties of EM

- No learning rate

The updates do not require the tuning of a learning
rate (np > 0), as in most gradient-based methods.
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- Monotonic convergence
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Key properties of EM

- No learning rate

The updates do not require the tuning of a learning
rate (np > 0), as in most gradient-based methods.

- Monotonic convergence

The updated CPTs from EM always increase the
incomplete-data log-likelihood £ = )", log P(Vi =Vt).
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Check In

Q. How much of EM did you understand?
A (Nearly) Allof it L&+
B. Some of it, but | have some doubts [l o7-
C. Maybe a little, but I'm pretty confused '557'

D. Almost none of it; I'm totally lost

6.217,.- .
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Log-likelihood
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Log-likelihood

- Incomplete data set
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Log-likelihood

- Incomplete data set

t|AalB]|cC
11 o ? C
2 as ? C
T G} cr
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- Incomplete data set .—>.

tlalB|cC
1| o |G
2 a, ? (&)
T dT cr
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- Incomplete data set .—’.

t|AalB]|cC

1la | 7] q How to choose the CPTs

20 a |7 to maximize the log-likelihood
: of this (incomplete) data?

T | ar cr
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- Incomplete data set .—’.

t|AalB]|cC
1la | 7] q How to choose the CPTs
20 a |7 to maximize the log-likelihood

of this (incomplete) data?

T ar ? cr

- Log-likelihood
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- Incomplete data set .—’.

t|AalB]|cC
1la | 7] q How to choose the CPTs
20 a |7 to maximize the log-likelihood

of this (incomplete) data?

T ar ? cr

- Log-likelihood
L o= ) logP(ac)
t
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- Incomplete data set .—’.

t|AalB]|cC

1la | 7] q How to choose the CPTs
2@ | 7] q to maximize the log-likelihood
: : of this (incomplete) data?

T | ar cr

- Log-likelihood

L

Z |0g P(Clt, Ct)
t

ks e
t b
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- Incomplete data set .—’.

t|AalB]|cC
1|la | 72| How to choose the CPTs
20 a |7 to maximize the log-likelihood

of this (incomplete) data?

T ar ? cr

- Log-likelihood
£ = ) logP(asc)
t

b a0
3l A .
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- Incomplete data set .—’.

t|AalB]|cC
1|la | 72| How to choose the CPTs
20 a |7 to maximize the log-likelihood

Do : of this (incomplete) data?
T ar ? Ccr
- Log-likelihood
£ = ) logP(asc)
t

b a0
3l A .

ZIOgZ ar) P(blat) P(ct|b) ’conditionalindependence‘
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‘_>. Suppose that A and C are

observed and B is hidden.
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‘_>. Suppose that A and C are

observed and B is hidden.

Q. Which parameters of this network can you estimate directly

from thi iata (in one step—no iteration required)?

P(BIA) xc
pcl) K

o N w

Both A. and C.

E. None of them
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EM update for P(A)
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EM update for P(A)

@—0—0
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EM update for P(A)

@—0—0

- General form
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT

P(A=aqa)
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EM update for P(A)

(r) .
@—@
- General form
1
PUG=X) — 3 3 PXi=xVe=v)

t

- Update for this CPT /X ‘b

P(A=a) <«+— T P(A=alA=a;,C=c) O

C
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT

1

P(A=a) +— ZP(A:G\A:G[,C:Q)
t

il

Simplify:

P(A=a) <+—
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT

1

P(A=a) +— ZP(A:G\A:G[,C:Q)
t

il

Simplify:

P(A=a) +— % > I(a,ar)
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EM update for P(A)

- General form

Simplify:

P(A=aqa)

P(A=a)

®&—©

1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT

—

«—

! > P(A=alA=a,,C=c)
t

il

1 1
= Et (a,ar) 7 count(A=a)
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EM update for P(A)

(r) .
@—@
- General form
1
P(Xi=x) «— ?ZP(X[:X“/t:Vt)

- Update for this CPT

P(A=a) +— !

il

> P(A=alA=a,,C=c)
t
Simplify:
PA=a) «— %Zl(a,at) _ %count(/—\:a)
t

The update reduces to the ML estimate for complete data—as it must,
because A is observed and has no unobserved parents.
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EM update for P(B|A)
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EM update for P(B|A)

@—>E—06
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EM update for P(B|A)

@—>E—06

- General form
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EM update for P(B|A)

@—©—40,

> i P(Xi=x,paj=7|Vi =v)
> P(paj=n|Vi=v)

<

- General form

P(Xi=x|paj=7) +—
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EM update for P(B|A)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT
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EM update for P(B|A)

@—>E—06

> i P(Xi=x,paj=7|Vi =v)
> P(paj=n|Vi=v)

- General form

P(Xi=x|paj=7) +—

- Update for this CPT

P(B=bJ|A=aqa)
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EM update for P(B|A)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT
> iP(B=b,A=alA=a;,C=¢)

P(B=blA=a) «—
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EM update for P(B|A)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT

> P(B=b,A=alA=a;,C=ct)
> P(A=alA=a;, C=c)

P(B=blA=a) «—
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EM update for P(B|A)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-:7T|Vt:Vt)

- Update for this CPT

> P(B=b,A=alA=a;,C=ct)
> P(A=alA=a;, C=c)

P(B=blA=a) <+—
Simplify:

P(B=blA=a) <+—
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EM update for P(B|A)

@ O @

- General form
Yot PXi=x,paj=m|Vi=v;)

(Xi |pay ) Et P(pa/-:ﬂ\/tzvt)

- Update for this CPT

S P(B=b,A=alA=a;,C=c)
Z[ P(AZG‘A:Gt7 C:Ct)

P(B:b|A=O) —

Simplify:

P(B=blA=a) +— S, I(a,a;) P(B=blA=a;,C=c;)
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EM update for P(B|A)

@ O @

- General form
Yot PXi=x, pa;=m|Vi=Vv;)

(Xi |pay ) Et P(pa/-:ﬂ\/tzvt)

- Update for this CPT

_blA S P(B=b,A=alA=a;,C=c)
_» P(B=blA=a) «— S P(A=alA=ay;,C=c;)

4 Simplify: —_— . -
P(B:b|A:a) — Zt[/(a7at)~ (B:b|A:ataC:Ct)

,Tt‘l(avat) (
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EM update for P(B|A)

@—>e—0

> P(Xi=x, paj=m|Ve=vt)
> i P(paj=n|Vi=v)

- General form

P(Xi=x|paj=m) +—

- Update for this CPT

> 1P(B=b,A=alA=a;,C=¢)

P(B=blA=a) <— Y P(A=alA=a;,C=ct)

Slmplify computed from Bayes rule
Zt /(CI7CIt)

P(B=blA=a) +—
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@—0E—0
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference

P(B=b|A=a,C=()
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference

P(C=c|B=b,A=a)P(B=b|A=a
PB=bi=0,c=0) = O |P(C:C|A) Ev) S
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference
P(C=c|B=b,A=a)P(B=b|A=a
PB=bli=0,C=) = Z=C P(C:CIA) Ev) S
_ P(C=c|B=b)P(B=b|A=aq)
a P(C=c|A=aq)
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference
P(C=c|B=b,A=a)P(B=b|A=a
PB=bli=0,C=) = Z=C P(C:CIA) Ev) S
_ P(C=c|B=b)P(B=b|A=aq)
a P(C=c|A=aq)

_ __P(C=c|B=b)P(B=blA=aq) .
= ¥, P(C=dB=b)PE=bA=0)
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‘—>. Suppose that A and C are

observed and B is hidden.

- Inference

P(C=c|B=b,A=a)P(B=b|A=a
PB=bi=0,c=0) = O |P(C:C|A) Ev) S

_ P(C=c|B=b)P(B=b|A=aq)
N P(C=c|A=aq)

_ __P(C=c|B=b)P(B=blA=aq) .
= ¥, P(C=dB=b)PE=bA=0)

This is the only non-trivial posterior probability that
we'll need for the EM updates in this example.
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EM update for P(C|B)
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EM update for P(C|B)

@—>E—06
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EM update for P(C|B)

@—>E—06

- General form
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT
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EM update for P(C|B)

@—>E—06

> i P(Xi=x,paj=7|Vi =v)
> P(paj=n|Vi=v)

- General form

P(Xi=x|paj=7) +—

- Update for this CPT

P(C=c|B=b)
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT
> iP(C=c,B=blA=a;,C=c)

P(C=c|B=b) «—
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT

> iP(C=c,B=blA=a;,C=c)
Zt P(B:b|A:at,C:Ct)

P(C=c|B=b)
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-:7T|Vt:Vt)

- Update for this CPT

> iP(C=c,B=blA=a;,C=c)
Zt P(B:b|A:Gt,C:Ct)

P(C=c|B=Db)
Simplify:

P(C=c|B=b) <«+—
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(X;i=X|pa,=m) +—
(Xi=xlpa;=m) > Ploa =7 Ve=v)

- Update for this CPT

> iP(C=c,B=blA=a;,C=c)
Zt P(B:b|A:Gt,C:Ct)

P(C=c|B=Db)
Simplify:

I(c,ct)P(B=b|A= =
P(C=clB=b) « 2=lCC)P(B=bA=a:;C=C)
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EM update for P(C|B)

@—>E—06

- General form
> i P(Xi=x,paj=7|Vi =v)

P(Xi=X|pa;=m) +—
( ! ‘p | ) Et P(pa,-=7T|Vt=Vt)

- Update for this CPT

> P(C=c,B=blA=a;,C=c)
Zt P(B:b|A:at,C:Ct)

P(C=c|B=b)

Simplify:

Yo l(c,c)P(B=blA=a;, C=c)

P(C=c|B=b) +«+— S P(B=blA=a;,C=c;)
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Summary of EM algorithm
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Summary of EM algorithm

- E-step (Inference)
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Summary of EM algorithm

- E-step (Inference)
_ _ P(c|b) P(blar)
> P(ce|b”) P(b'|at)

@—>=—©

P(bla:, cr)
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Summary of EM algorithm

- E-step (Inference)
_ _ P(c|b) P(blar)
> P(ce|b”) P(b'|at)

- M-step (Learning)

@—>=—©

P(bla:, cr)
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Summary of EM algorithm

- E-step (Inference)
_ _ P(c|b) P(blar)
> P(ce|b”) P(b'|at)

- M-step (Learning)

@—>=—©

P(bla:, cr)

P(a) = %count(Aza)
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Summary of EM algorithm

- E-step (Inference)
_ _ P(c|b) P(blar)
> P(ct|b’) P(b'ar)

- M-step (Learning)

@—>=—©

P(bla:, cr)

P(a) = % count(A=aq)
P(bla) «— Zt/;f(ta)i(ia”c)
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Summary of EM algorithm

- E-step (Inference) ,\.\. (\L‘

__P(clb) P(blay)
) = S Ralb P

@—>=—©

- M-step (Learning)
P(a) = %count(A:a)

> l(a, a) P(blac, )
P(bla) | +—
\/-) Zt (G Gt)
L)y Etgﬁ)babc@ )
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Summary of EM algorithm

- E-step (Inference)
P(ct|b) P(bla:)
Zb/ P(Ct|b,) P(b"at)

@—>=—©

P(blat, cr) =

- M-step (Learning)
P(a) = %count(A:a)

> l(a,a) P(blar, i)
Zt (a at)

S (e, ) P(blar, c)
> P(blat, ct)

pP(bla) «—

P(clb) +—

- Convergence

196 / 200



Summary of EM algorithm

- E-step (Inference)
P(ct|b) P(bla:)
> P(ce|b”) P(b'|at)

@—>=—©

P(blai, ct) =

- M-step (Learning)

P(a) = % count(A=aq)
P(bla) +— > l(a,al) P(blar. i)
> l(a,ar)
P(clb) Ztgﬁ)babf )
- Convergence

There are no learning rates to tune.
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Summary of EM algorithm

- E-step (Inference)
@—0>—©

P(ci|b) P(blat)
2 P(cefb") P(b']ar)

P(blai, ct) =

- M-step (Learning)

P(a) = % count(A=aq)
P(bla) +— > l(a,al) P(blar. i)
> l(a,ar)
P(clb) Ztgﬁ)babf )
- Convergence

There are no learning rates to tune.
Each update increases the incomplete data log-likelihood:

Z'ng a:) P(bla:) P(ct|b)
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Check In

Q. How much of EM did you understand?
A (Nearly) Allofit g/ &= 1 S
B. Some of it, but | have some doubts 45 '/».
C. Maybe a little, but I'm pretty confused =71 =<

(‘/—1110

D. Almost none of it; I'm totally lost

199 /200



That's all folks!
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